List of usage examples for java.lang Double MAX_VALUE
double MAX_VALUE
To view the source code for java.lang Double MAX_VALUE.
Click Source Link
From source file:edu.scripps.fl.curves.CurveFit.java
public static void fit(Curve curve) { log.debug("Fitting Curve: " + curve); double y[] = (double[]) ConvertUtils.convert(curve.getResponses(), double[].class); double x[] = (double[]) ConvertUtils.convert(curve.getConcentrations(), double[].class); for (int ii = 0; ii < x.length; ii++) x[ii] = Math.log10(x[ii]); // max, min and range double minY = Double.MAX_VALUE; double maxY = -Double.MAX_VALUE; double maxResp = y[y.length - 1]; for (int i = 0; i < y.length; i++) { minY = Math.min(minY, y[i]); maxY = Math.max(maxY, y[i]); }//from w ww.j a v a2s . co m curve.setResponseMin(minY); curve.setResponseMax(maxY); curve.setResponseRange(maxY - minY); curve.setMaxResponse(maxResp); // fit boolean flags[] = null; Map maps[] = null; double fitValues[] = null; Object fitResults[] = HillFit.doHill(x, y, null, HillConstants.FIT_ITER_NO, HillConstants.P4_FIT); if (fitResults != null) { flags = (boolean[]) fitResults[0]; fitValues = (double[]) fitResults[1]; maps = (Map[]) fitResults[2]; } if (fitValues != null) { curve.setYZero(fitValues[6]); curve.setLogEC50(fitValues[0]); curve.setYInflection(fitValues[1]); curve.setHillSlope(fitValues[2]); curve.setR2(fitValues[3]); double ec50 = 1000000D * Math.exp(Math.log(10D) * curve.getLogEC50()); double testEC50 = Math.pow(10, curve.getLogEC50()); Double ic50 = null; double logIC50 = BatchHill.iccalc(curve.getYZero(), curve.getYInflection(), curve.getLogEC50(), curve.getHillSlope(), 50D); if (logIC50 < 0.0D) ic50 = 1000000D * Math.exp(Math.log(10D) * logIC50); int dn = Math.max(1, x.length - 4); double df = dn; double p = HillStat.calcPValue(curve.getYZero(), curve.getYInflection(), curve.getLogEC50(), curve.getHillSlope(), x, y, flags); int mask = 0; for (int i = 0; i < x.length; i++) if (!flags[i]) mask++; double ss = HillStat.calcHillDeviation(curve.getLogEC50(), curve.getYZero(), curve.getYInflection(), curve.getHillSlope(), flags, null, x, y); curve.setEC50(ec50); curve.setIC50(ic50); curve.setPHill(p); curve.setSYX(ss / df); for (int ii = 0; ii < flags.length; ii++) { if (flags[ii] == true) { curve.setMasked(true); break; } } } else { curve.setLogEC50(null); curve.setHillSlope(null); curve.setR2(null); curve.setYInflection(null); curve.setYZero(null); curve.setEC50(null); curve.setIC50(null); curve.setPHill(null); curve.setSYX(null); curve.setMasked(false); flags = new boolean[x.length]; } // masks List<Boolean> masks = new ArrayList<Boolean>(flags.length); CollectionUtils.addAll(masks, (Boolean[]) ConvertUtils.convert(flags, Boolean[].class)); curve.setMask(masks); // classify curveClassification(curve, y, x, flags); // rank double rank = -BatchHill.calcRank(curve.getCurveClass(), curve.getMaxResponse(), curve.getResponseRange()); curve.setRank(rank); }
From source file:endrov.nucAutoJH.FitGaussian.java
private static double[] fitGaussian2D_(EvPixels p, double sigmaInit, final double midxInit, final double midyInit) { //sigma00, sigma01, sigma11, mu_x, mu_y, c p = p.getReadOnly(EvPixelsType.DOUBLE); final double[] arrPixels = p.getArrayDouble(); final int w = p.getWidth(); final int h = p.getHeight(); int extent = (int) Math.round(3 * sigmaInit); extent = Math.max(extent, 2); final int sx = Math.max(0, (int) (midxInit - extent)); final int ex = Math.min(w, (int) (midxInit + extent + 1)); //+1 to the right? final int sy = Math.max(0, (int) (midyInit - extent)); final int ey = Math.min(h, (int) (midyInit + extent + 1)); double minIntensity = Double.MAX_VALUE; double maxIntensity = Double.MIN_VALUE; for (int y = sy; y < ey; y++) { int base = y * w; double dy2 = y - midyInit; dy2 = dy2 * dy2;/*from w w w. ja va2 s .c om*/ for (int x = sx; x < ex; x++) { double dx2 = x - midxInit; dx2 = dx2 * dx2; double t = arrPixels[base + x]; //if(dx2+dy2<=extent*extent) { if (t < minIntensity) minIntensity = t; if (t > maxIntensity) maxIntensity = t; } } } //double[] weights=new double[]{1}; double[] startPoint = new double[] { sigmaInit, 0, sigmaInit, midxInit, midyInit, minIntensity, maxIntensity - minIntensity }; //double[] output=new double[startPoint.length]; try { MultivariateRealFunction func = new MultivariateRealFunction() { // opt.optimize( public double value(double[] arg) throws FunctionEvaluationException, IllegalArgumentException { double sigma00 = arg[0]; double sigma01 = arg[1]; double sigma11 = arg[2]; double mu0 = arg[3]; double mu1 = arg[4]; double C = arg[5]; double D = arg[6]; double sumError = 0; Matrix2d sigma = new Matrix2d(sigma00, sigma01, sigma01, sigma11); Matrix2d sigmaInv = new Matrix2d(); sigma.invert(sigmaInv); double sigmaDet = sigma.determinant(); double front = 1.0 / (2 * Math.PI * Math.sqrt(sigmaDet)); //System.out.println("front: "+front); //System.out.println("sigma inv "+sigmaInv); if (mu0 < sx || mu0 > ex) sumError += 1000000; if (mu1 < sy || mu1 > ey) sumError += 1000000; if (sigma00 < 1) sumError += 1000000; //if(sigma01<0) sumError+=1000000; if (sigma11 < 1) sumError += 1000000; if (D <= 0) sumError += 1000000; for (int y = sy; y < ey; y++) { int base = y * w; double dy2 = y - midyInit; dy2 = dy2 * dy2; for (int x = sx; x < ex; x++) { double dx2 = x - midxInit; dx2 = dx2 * dx2; double thisReal = arrPixels[base + x]; // if(dx2+dy2<=extent*extent) { // DoubleMatrix2D sigma=new DenseDoubleMatrix2D(new double[][]{{sigma00,sigma01},{sigma01,sigma11}}); //double sigmaDet=sigma00*sigma11-sigma01*sigma01; double dx0 = x - mu0; double dx1 = y - mu1; //http://en.wikipedia.org/wiki/Multivariate_normal_distribution Vector2d vX = new Vector2d(dx0, dx1); Vector2d op = new Vector2d(vX); sigmaInv.transform(op); double upper = -0.5 * op.dot(vX); double exp = Math.exp(upper); //System.out.println("front "+front+" "+exp+" C "+C+" thisreal"+thisReal+" upper "+upper); if (upper > -0.4) exp = 1; else exp = Math.max(0, 1 + upper + 0.4); /* if(exp<0.7) exp=0; else exp=1; */ double thisExpected = D * front * exp + C; double diff = thisExpected - thisReal; sumError += diff * diff; } } } //System.out.println(sigma00+"\t"+sigma01+"\t"+sigma11+"\tC"+C+"\tmu "+mu0+","+mu1+"\terr "+sumError); return sumError; // return new double[]{sumError}; } }; NelderMead opt = new NelderMead(); //LevenbergMarquardtOptimizer opt=new LevenbergMarquardtOptimizer(); opt.setMaxIterations(10000); RealPointValuePair pair = opt.optimize(func, GoalType.MINIMIZE, startPoint); int numit = opt.getIterations(); System.out.println("#it " + numit); System.out.println("err " + func.value(pair.getPointRef())); return pair.getPointRef(); // for(int i=0;i<startPoint.length;i++) // System.out.println("i: "+i+" "+output[i]); //, output, weights, startPoint); } /* catch (MaxIterationsExceededException e) { System.out.println("max it reached"); }*/ catch (Exception e) { e.printStackTrace(); } //Maybe this is a bad point? System.out.println("max it reached"); return startPoint; // return output; }
From source file:endrov.typeLineageAutoNucJH.FitGaussian.java
private static double[] fitGaussian2D_(EvPixels p, double sigmaInit, final double midxInit, final double midyInit) { //sigma00, sigma01, sigma11, mu_x, mu_y, c p = p.getReadOnly(EvPixelsType.DOUBLE); final double[] arrPixels = p.getArrayDouble(); final int w = p.getWidth(); final int h = p.getHeight(); int extent = (int) Math.round(3 * sigmaInit); extent = Math.max(extent, 2); final int sx = Math.max(0, (int) (midxInit - extent)); final int ex = Math.min(w, (int) (midxInit + extent + 1)); //+1 to the right? final int sy = Math.max(0, (int) (midyInit - extent)); final int ey = Math.min(h, (int) (midyInit + extent + 1)); double minIntensity = Double.MAX_VALUE; double maxIntensity = -Double.MAX_VALUE; for (int y = sy; y < ey; y++) { int base = y * w; double dy2 = y - midyInit; dy2 = dy2 * dy2;// w ww . j a v a2s .c o m for (int x = sx; x < ex; x++) { double dx2 = x - midxInit; dx2 = dx2 * dx2; double t = arrPixels[base + x]; //if(dx2+dy2<=extent*extent) { if (t < minIntensity) minIntensity = t; if (t > maxIntensity) maxIntensity = t; } } } //double[] weights=new double[]{1}; double[] startPoint = new double[] { sigmaInit, 0, sigmaInit, midxInit, midyInit, minIntensity, maxIntensity - minIntensity }; //double[] output=new double[startPoint.length]; try { MultivariateRealFunction func = new MultivariateRealFunction() { // opt.optimize( public double value(double[] arg) throws FunctionEvaluationException, IllegalArgumentException { double sigma00 = arg[0]; double sigma01 = arg[1]; double sigma11 = arg[2]; double mu0 = arg[3]; double mu1 = arg[4]; double C = arg[5]; double D = arg[6]; double sumError = 0; Matrix2d sigma = new Matrix2d(sigma00, sigma01, sigma01, sigma11); Matrix2d sigmaInv = new Matrix2d(); sigma.invert(sigmaInv); double sigmaDet = sigma.determinant(); double front = 1.0 / (2 * Math.PI * Math.sqrt(sigmaDet)); //System.out.println("front: "+front); //System.out.println("sigma inv "+sigmaInv); if (mu0 < sx || mu0 > ex) sumError += 1000000; if (mu1 < sy || mu1 > ey) sumError += 1000000; if (sigma00 < 1) sumError += 1000000; //if(sigma01<0) sumError+=1000000; if (sigma11 < 1) sumError += 1000000; if (D <= 0) sumError += 1000000; for (int y = sy; y < ey; y++) { int base = y * w; double dy2 = y - midyInit; dy2 = dy2 * dy2; for (int x = sx; x < ex; x++) { double dx2 = x - midxInit; dx2 = dx2 * dx2; double thisReal = arrPixels[base + x]; // if(dx2+dy2<=extent*extent) { // DoubleMatrix2D sigma=new DenseDoubleMatrix2D(new double[][]{{sigma00,sigma01},{sigma01,sigma11}}); //double sigmaDet=sigma00*sigma11-sigma01*sigma01; double dx0 = x - mu0; double dx1 = y - mu1; //http://en.wikipedia.org/wiki/Multivariate_normal_distribution Vector2d vX = new Vector2d(dx0, dx1); Vector2d op = new Vector2d(vX); sigmaInv.transform(op); double upper = -0.5 * op.dot(vX); double exp = Math.exp(upper); //System.out.println("front "+front+" "+exp+" C "+C+" thisreal"+thisReal+" upper "+upper); if (upper > -0.4) exp = 1; else exp = Math.max(0, 1 + upper + 0.4); /* if(exp<0.7) exp=0; else exp=1; */ double thisExpected = D * front * exp + C; double diff = thisExpected - thisReal; sumError += diff * diff; } } } //System.out.println(sigma00+"\t"+sigma01+"\t"+sigma11+"\tC"+C+"\tmu "+mu0+","+mu1+"\terr "+sumError); return sumError; // return new double[]{sumError}; } }; NelderMead opt = new NelderMead(); //LevenbergMarquardtOptimizer opt=new LevenbergMarquardtOptimizer(); opt.setMaxIterations(10000); RealPointValuePair pair = opt.optimize(func, GoalType.MINIMIZE, startPoint); int numit = opt.getIterations(); System.out.println("#it " + numit); System.out.println("err " + func.value(pair.getPointRef())); return pair.getPointRef(); // for(int i=0;i<startPoint.length;i++) // System.out.println("i: "+i+" "+output[i]); //, output, weights, startPoint); } /* catch (MaxIterationsExceededException e) { System.out.println("max it reached"); }*/ catch (Exception e) { e.printStackTrace(); } //Maybe this is a bad point? System.out.println("max it reached"); return startPoint; // return output; }
From source file:GaussianHat.java
public GaussianHat(double mean, double sd) { this(mean, sd, 0, Double.MAX_VALUE); }
From source file:de.termininistic.serein.examples.benchmarks.functions.unimodal.RosenbrockFunction.java
@Override public double map(RealVector v) { double fx = Double.MAX_VALUE; double[] x = v.toArray(); int n = x.length; fx = 0.0;//from www. j a v a 2 s . c om for (int i = 0; i < n - 1; i++) { double term1 = (x[i + 1] - x[i] * x[i]); fx += 100 * term1 * term1 + (x[i] - 1) * (x[i] - 1); } return fx; }
From source file:comp.web.core.DataUtil.java
public List<Product> getProds(String cat, String prod, String from, String to) { logger.log(Level.FINER, "get prods with filter {0} {1} {2} {3}", new Object[] { cat, prod, from, to }); if (StringUtils.isBlank(cat) && StringUtils.isBlank(prod) && StringUtils.isBlank(from) && StringUtils.isBlank(to)) { return Collections.emptyList(); }// w w w . ja v a 2 s. co m String cat1 = StringUtils.stripToEmpty(cat) + "%"; String prod1 = StringUtils.stripToEmpty(prod) + "%"; double from1 = StringUtils.isNumeric(from) ? Double.parseDouble(from) : Double.MIN_VALUE; double to1 = StringUtils.isNumeric(to) ? Double.parseDouble(to) : Double.MAX_VALUE; EntityManager em = createEM(); // EntityTransaction tx = em.getTransaction(); // tx.begin(); List<Product> products = em.createNamedQuery("priceList", Product.class).setParameter("cat", cat1) .setParameter("prod", prod1).setParameter("from", from1).setParameter("to", to1).getResultList(); // tx.commit(); em.close(); logger.log(Level.FINER, "get prods result size {0}", products.size()); return products; }
From source file:ch.aonyx.broker.ib.api.util.ByteArrayRequestBuilder.java
@Override public RequestBuilder append(final double d) { if (d != Double.MAX_VALUE) { bytes = Bytes.concat(bytes, String.valueOf(d).getBytes()); }// www . ja v a 2s . co m appendEol(); return this; }
From source file:audio.cords.old.RegressionDemo.java
private static XYDataset regress(XYSeriesCollection data) { // Determine bounds double xMin = Double.MAX_VALUE, xMax = 0; for (int i = 0; i < data.getSeriesCount(); i++) { XYSeries ser = data.getSeries(i); for (int j = 0; j < ser.getItemCount(); j++) { double x = ser.getX(j).doubleValue(); if (x < xMin) { xMin = x;/*from www . ja va 2 s . c o m*/ } if (x > xMax) { xMax = x; } } } // Create 2-point series for each of the original series XYSeriesCollection coll = new XYSeriesCollection(); for (int i = 0; i < data.getSeriesCount(); i++) { XYSeries ser = data.getSeries(i); int n = ser.getItemCount(); double sx = 0, sy = 0, sxx = 0, sxy = 0, syy = 0; for (int j = 0; j < n; j++) { double x = ser.getX(j).doubleValue(); double y = ser.getY(j).doubleValue(); sx += x; sy += y; sxx += x * x; sxy += x * y; syy += y * y; } double b = (n * sxy - sx * sy) / (n * sxx - sx * sx); double a = sy / n - b * sx / n; XYSeries regr = new XYSeries(ser.getKey()); regr.add(xMin, a + b * xMin); regr.add(xMax, a + b * xMax); coll.addSeries(regr); } return coll; }
From source file:com.netflix.config.DynamicFileConfigurationTest.java
static void modifyConfigFile() { new Thread() { public void run() { try { BufferedWriter writer = new BufferedWriter( new OutputStreamWriter(new FileOutputStream(configFile), "UTF-8")); writer.write("abc=-2"); // this property should fail validation but should not affect update of other properties writer.newLine();/*from w ww .j a v a 2 s . com*/ writer.write("dprops1=" + String.valueOf(Long.MIN_VALUE)); writer.newLine(); writer.write("dprops2=" + String.valueOf(Double.MAX_VALUE)); writer.newLine(); writer.close(); System.err.println(configFile.getPath() + " modified"); } catch (Exception e) { e.printStackTrace(); fail("Unexpected exception"); } } }.start(); }
From source file:edu.iu.kmeans.regroupallgather.PointLoadTask.java
/** * Load data points from a file.// w w w.j av a2s. c o m * * @param file * @param conf * @return * @throws IOException */ public static double[] loadPoints(String file, int pointsPerFile, int cenVecSize, Configuration conf) throws Exception { double[] points = new double[pointsPerFile * cenVecSize]; Path pointFilePath = new Path(file); FileSystem fs = pointFilePath.getFileSystem(conf); FSDataInputStream in = fs.open(pointFilePath); try { for (int i = 0; i < points.length;) { points[i++] = Double.MAX_VALUE; for (int j = 1; j < cenVecSize; j++) { points[i++] = in.readDouble(); } } } finally { in.close(); } return points; }