List of usage examples for java.lang Double MAX_VALUE
double MAX_VALUE
To view the source code for java.lang Double MAX_VALUE.
Click Source Link
From source file:gov.va.isaac.gui.listview.operations.ParentRetire.java
@Override public void init(ObservableList<SimpleDisplayConcept> conceptList) { super.init(conceptList); root_.add(new Label("Retire as parent"), 0, 0); retireAsParent_.setPromptText("-Populate the Concepts List-"); Node n = ErrorMarkerUtils.setupErrorMarker(retireAsParent_, replaceOptionsInvalidString_); root_.add(n, 1, 0);//from ww w. j a v a 2s . c o m ComboBoxSetupTool.setupComboBox(retireAsParent_); // TODO populate retireAsParentCombo retireAsParent_.setMaxWidth(Double.MAX_VALUE); GridPane.setHgrow(n, Priority.ALWAYS); FxUtils.preventColCollapse(root_, 0); retireAsParent_.getItems().addListener(new ListChangeListener<SimpleDisplayConcept>() { @Override public void onChanged(javafx.collections.ListChangeListener.Change<? extends SimpleDisplayConcept> c) { if (retireAsParent_.getItems().size() > 0) { replaceOptionsInvalidString_.set(null); if (retireAsParent_.getSelectionModel().getSelectedItem() == null) { retireAsParent_.getSelectionModel().selectFirst(); } } else { replaceOptionsInvalidString_.set("A concept must be selected from this drop down"); retireAsParent_.getSelectionModel().clearSelection(); retireAsParent_.setValue(null); retireAsParent_.setPromptText("-Populate the Concepts List-"); } } }); allValid_ = new BooleanBinding() { { super.bind(replaceOptionsInvalidString_); } @Override protected boolean computeValue() { return StringUtils.isBlank(replaceOptionsInvalidString_.get()); } }; }
From source file:classif.PrototyperEUC.java
@Override public double evalErrorRate(ClassedSequence[] testSequences) { int nbCorrectlyClassified = 0; for (int s = 0; s < testSequences.length; s++) { Sequence seq = testSequences[s].sequence; double minD = Double.MAX_VALUE; String classValue = null; for (ClassedSequence proto : prototypes) { double tmpD = seq.distanceEuc(proto.sequence); if (tmpD < minD) { minD = tmpD;//from w w w . j av a 2 s . com classValue = proto.classValue; } } if (classValue.equals(testSequences[s].classValue)) { nbCorrectlyClassified++; } } return 1.0 - 1.0 * nbCorrectlyClassified / (testSequences.length); }
From source file:com.joptimizer.algebra.Matrix1NornRescaler.java
/** * Scaling factors for not singular matrices. * @see Daniel Ruiz, "A scaling algorithm to equilibrate both rows and columns norms in matrices" * @see Philip A. Knight, Daniel Ruiz, Bora Ucar "A Symmetry Preserving Algorithm for Matrix Scaling" *///from w w w . j a v a 2 s .c o m @Override public DoubleMatrix1D[] getMatrixScalingFactors(DoubleMatrix2D A) { DoubleFactory1D F1 = DoubleFactory1D.dense; Algebra ALG = Algebra.DEFAULT; int r = A.rows(); int c = A.columns(); DoubleMatrix1D D1 = F1.make(r, 1); DoubleMatrix1D D2 = F1.make(c, 1); DoubleMatrix2D AK = A.copy(); DoubleMatrix1D DR = F1.make(r, 1); DoubleMatrix1D DC = F1.make(c, 1); DoubleMatrix1D DRInv = F1.make(r); DoubleMatrix1D DCInv = F1.make(c); log.debug("eps : " + eps); int maxIteration = 50; for (int k = 0; k <= maxIteration; k++) { double normR = -Double.MAX_VALUE; double normC = -Double.MAX_VALUE; for (int i = 0; i < r; i++) { double dri = ALG.normInfinity(AK.viewRow(i)); DR.setQuick(i, Math.sqrt(dri)); DRInv.setQuick(i, 1. / Math.sqrt(dri)); normR = Math.max(normR, Math.abs(1 - dri)); } for (int j = 0; j < c; j++) { double dci = ALG.normInfinity(AK.viewColumn(j)); DC.setQuick(j, Math.sqrt(dci)); DCInv.setQuick(j, 1. / Math.sqrt(dci)); normC = Math.max(normC, Math.abs(1 - dci)); } log.debug("normR: " + normR); log.debug("normC: " + normC); if (normR < eps && normC < eps) { break; } //D1 = ALG.mult(D1, DRInv); for (int i = 0; i < r; i++) { double prevD1I = D1.getQuick(i); double newD1I = prevD1I * DRInv.getQuick(i); D1.setQuick(i, newD1I); } //D2 = ALG.mult(D2, DCInv); for (int j = 0; j < c; j++) { double prevD2J = D2.getQuick(j); double newD2J = prevD2J * DCInv.getQuick(j); D2.setQuick(j, newD2J); } //log.debug("D1: " + ArrayUtils.toString(D1.toArray())); //log.debug("D2: " + ArrayUtils.toString(D2.toArray())); if (k == maxIteration) { log.warn("max iteration reached"); } //AK = ALG.mult(DRInv, ALG.mult(AK, DCInv)); AK = ColtUtils.diagonalMatrixMult(DRInv, AK, DCInv); } return new DoubleMatrix1D[] { D1, D2 }; }
From source file:lirmm.inria.fr.peersim.dpmf.MainSite.java
public MainSite(long ID) throws IOException { super(ID);//from w w w .ja v a2s. c o m latentDimension = Configuration.getInt(parameter_latentDimension); lambdaU = Configuration.getDouble(parameter_u); lambdaV = Configuration.getDouble(parameter_v); lambdaR = Configuration.getDouble(parameter_r); J = Double.MAX_VALUE; String file = Configuration.getString(parameter_datasource); R = DataMatrix.createDataMatrix(file); U = BigSparseRealMatrix.randomGenerateMatrix(latentDimension, R.getRowDimension()); V = BigSparseRealMatrix.randomGenerateMatrix(latentDimension, R.getColumnDimension()); R.cutDataSet(Configuration.getDouble(parameter_testsetrate), 0); System.err.println("R=[" + R.getRowDimension() + "," + R.getColumnDimension() + "]= " + R.getDataSize() + " (Rate = " + Configuration.getDouble(parameter_testsetrate) + "%)"); // double[][] uData = {{0.04459, 0.06017, 0.09179, 0.04057, 0.08069, 0.06254, 0.07317, 0.02529, 0.0926, 0.04346}, // {0.06973, 0.049, 0.06391, 0.01254, 0.05567, 0.05333, 0.08618, 0.05368, 0.01709, 0.06473}, // {0.08956, 0.09606, 0.06459, 0.09891, 0.04529, 0.04609, 0.08478, 0.05972, 0.01564, 0.06002}}; // // double[][] vData = {{0.06608, 0.02523, 0.0624, 0.0897, 0.03538, 0.05164, 0.06457, 0.07063, 0.09929, 0.08286}, // {0.05791, 0.09987, 0.05437, 0.03309, 0.04333, 0.02943, 0.01195, 0.01118, 0.03416, 0.01022}, // {0.00973, 0.08802, 0.05382, 0.06729, 0.07961, 0.03695, 0.02192, 0.06149, 0.00978, 0.04965}}; // U = new BigSparseRealMatrix(uData); // V = new BigSparseRealMatrix(vData); }
From source file:com.joptimizer.algebra.Matrix1NormRescaler.java
/** * Scaling factors for not singular matrices. * @see Daniel Ruiz, "A scaling algorithm to equilibrate both rows and columns norms in matrices" * @see Philip A. Knight, Daniel Ruiz, Bora Ucar "A Symmetry Preserving Algorithm for Matrix Scaling" *///from w ww.j av a 2s . c o m public DoubleMatrix1D[] getMatrixScalingFactors(DoubleMatrix2D A) { DoubleFactory1D F1 = DoubleFactory1D.dense; DoubleFactory2D F2 = DoubleFactory2D.sparse; Algebra ALG = Algebra.DEFAULT; int r = A.rows(); int c = A.columns(); DoubleMatrix1D D1 = F1.make(r, 1); DoubleMatrix1D D2 = F1.make(c, 1); DoubleMatrix2D AK = A.copy(); DoubleMatrix1D DR = F1.make(r, 1); DoubleMatrix1D DC = F1.make(c, 1); DoubleMatrix1D DRInv = F1.make(r); DoubleMatrix1D DCInv = F1.make(c); log.debug("eps : " + eps); int maxIteration = 50; for (int k = 0; k <= maxIteration; k++) { double normR = -Double.MAX_VALUE; double normC = -Double.MAX_VALUE; for (int i = 0; i < r; i++) { double dri = ALG.normInfinity(AK.viewRow(i)); DR.setQuick(i, Math.sqrt(dri)); DRInv.setQuick(i, 1. / Math.sqrt(dri)); normR = Math.max(normR, Math.abs(1 - dri)); } for (int j = 0; j < c; j++) { double dci = ALG.normInfinity(AK.viewColumn(j)); DC.setQuick(j, Math.sqrt(dci)); DCInv.setQuick(j, 1. / Math.sqrt(dci)); normC = Math.max(normC, Math.abs(1 - dci)); } log.debug("normR: " + normR); log.debug("normC: " + normC); if (normR < eps && normC < eps) { break; } //D1 = ALG.mult(D1, DRInv); for (int i = 0; i < r; i++) { double prevD1I = D1.getQuick(i); double newD1I = prevD1I * DRInv.getQuick(i); D1.setQuick(i, newD1I); } //D2 = ALG.mult(D2, DCInv); for (int j = 0; j < c; j++) { double prevD2J = D2.getQuick(j); double newD2J = prevD2J * DCInv.getQuick(j); D2.setQuick(j, newD2J); } //log.debug("D1: " + ArrayUtils.toString(D1.toArray())); //log.debug("D2: " + ArrayUtils.toString(D2.toArray())); if (k == maxIteration) { log.warn("max iteration reached"); } //AK = ALG.mult(DRInv, ALG.mult(AK, DCInv)); AK = ColtUtils.diagonalMatrixMult(DRInv, AK, DCInv); } return new DoubleMatrix1D[] { D1, D2 }; }
From source file:de.knowwe.visualization.util.Utils.java
public static String prepareLabel(String string) { // if (true) return string; String lb = LINE_BREAK;/*from w ww .ja v a 2s .c om*/ int length = string.length(); if (length < 13) return clean(string, lb); // find possible line break positions Set<Integer> possibleLBs = new TreeSet<>(); // possible line breaks are before the following chars: // _ >= <= = . ( [ and white spaces Matcher m = Pattern.compile("_|>=|<=|=|\\.|\\([^\\)]{1}|\\[[^\\]]{1}").matcher(string); while (m.find()) { possibleLBs.add(m.start(0)); } // line breaks at whitespace only if they are not in range of = or > or // < m = Pattern.compile("(?<=[^=<>]){3}( )(?=[^=<>]{3})").matcher(string); while (m.find()) { possibleLBs.add(m.start(1)); } if (possibleLBs.isEmpty()) return clean(string, lb); // add the line breaks were it makes sense List<Integer> desiredLBs = new LinkedList<>(); Set<Integer> addedLBs = new TreeSet<>(); // optimal length is determined by the length of the given String double optimalLength = (double) length / Math.sqrt(length / 5); for (int i = 1; i < string.length() / optimalLength; i++) { // having the line breaks on these position would be optimal desiredLBs.add((int) Math.round(i * optimalLength)); } //todo: remove creation of trailing linebreaks // try to find those possible line breaks that closest to the optimal // line breaks int d = 0; for (Integer desLB : desiredLBs) { int bestCandiadate = 0; // to avoid breaks for only a few chars at the end, we make // extra efforts for the last line break // we get the line break that produces the smallest variance // we should actually calculate the best break via variance for // all line breaks, but that seems rather complex and not yet // justified right now, since the current simple algorithm // already produces nice results if (d == desiredLBs.size() - 1) { double bestVar = Double.MAX_VALUE; for (Integer posLB : possibleLBs) { Set<Integer> temp = new TreeSet<>(addedLBs); temp.add(posLB); TreeSet<Integer> varianceCheck = new TreeSet<>(temp); varianceCheck.add(length); double variance = getVariance(varianceCheck); if (variance <= bestVar) { bestVar = variance; bestCandiadate = posLB; } } } // for all other breakpoints, just get the one closest to the // desired position else { for (Integer posLB : possibleLBs) { if (Math.abs(desLB - posLB) <= Math.abs(desLB - bestCandiadate)) { bestCandiadate = posLB; } } } if (bestCandiadate != 0 && bestCandiadate != length) { addedLBs.add(bestCandiadate); } d++; } // but in the line breaks StringBuilder labelBuilder = new StringBuilder(); List<String> split = new ArrayList<>(addedLBs.size() + 1); int last = 0; for (Integer addedLB : addedLBs) { split.add(string.substring(last, addedLB)); last = addedLB; } split.add(string.substring(last, string.length())); for (String s : split) { // clean the substrings labelBuilder.append(clean(s.trim(), lb)).append(lb); } String label = labelBuilder.toString(); return label; }
From source file:com.opengamma.maths.lowlevelapi.functions.utilities.Min.java
/** * Returns the index of the minimum value in data * @param data the data to search/* ww w .jav a2 s. c om*/ * @return idx, the index of the minimum value in the data */ public static int index(double... data) { Validate.notNull(data); double min = Double.MAX_VALUE; int idx = -1; final int n = data.length; for (int i = 0; i < n; i++) { if (data[i] < min) { min = data[i]; idx = i; } } return idx; }
From source file:com.l2jfree.gameserver.model.entity.Entity.java
public double getDistanceToZone(int x, int y) { if (_zone != null) return _zone.getDistanceToZone(x, y); _log.error(getClassName() + " has no zone defined"); return Double.MAX_VALUE; }
From source file:gsn.reports.scriptlets.StreamScriptlet.java
@SuppressWarnings("unchecked") public void setStatistics() throws JRScriptletException { String max = "NA"; String min = "NA"; String average = "NA"; String stdDeviation = "NA"; String median = "NA"; String nb = "0"; String startTime = "NA"; String endTime = "NA"; String samplingAverage = "NA"; // String samplingAverageUnit = "NA"; String nbOfNull = "0"; String samplingStdDeviation = "NA"; // String samplingStdDeviationUnit = "NA"; Collection<Data> datas = (Collection<Data>) this.getFieldValue("datas"); if (datas.size() > 0) { Double max_value = Double.MIN_VALUE; Double min_value = Double.MAX_VALUE; Double average_value = 0.0; Double sum_value = 0.0;/* w ww . ja v a 2 s . c o m*/ Long start_time_value = 0L; Long end_time_value = 0L; Long sampling_average_value = 0L; Integer nb_value = 0; Integer nb_of_null = 0; Iterator<Data> iter = datas.iterator(); Data nextData; Double nextDataValue; while (iter.hasNext()) { nextData = iter.next(); if (nextData.getValue() != null) { nextDataValue = (Double) nextData.getValue(); // sum_value += nextDataValue; // if (nextDataValue < min_value) min_value = nextDataValue; if (nextDataValue > max_value) max_value = nextDataValue; // if (datas.size() == 1 || nb_value == datas.size() / 2) median = nextDataValue.toString(); // if (!iter.hasNext()) { startTime = sdf.format(new Date((Long) nextData.getP2())).toString(); start_time_value = (Long) nextData.getP2(); } if (nb_value == 0) { endTime = sdf.format(new Date((Long) nextData.getP2())).toString(); end_time_value = (Long) nextData.getP2(); } } else { nb_of_null++; } nb_value++; } // max = max_value == Double.MIN_VALUE ? "NA" : max_value.toString(); min = min_value == Double.MAX_VALUE ? "NA" : min_value.toString(); nb = nb_value.toString(); average_value = (Double) (sum_value / nb_value); average = average_value.toString(); nbOfNull = nb_of_null.toString(); // if (datas.size() > 1) { sampling_average_value = (end_time_value - start_time_value) / (nb_value - 1); samplingAverage = Helpers.formatTimePeriod(sampling_average_value); } // iter = datas.iterator(); Double variance_value = 0.0; Double sampling_variance_value = 0.0; Long lastDataTime = end_time_value; int i = 0; while (iter.hasNext()) { nextData = iter.next(); if (nextData.getValue() != null) { nextDataValue = (Double) nextData.getValue(); variance_value += Math.pow((average_value - nextDataValue), 2); if (i > 0) { sampling_variance_value += Math .pow((sampling_average_value - ((lastDataTime - (Long) nextData.getP2()))), 2); lastDataTime = (Long) nextData.getP2(); } i++; } } stdDeviation = ((Double) Math.sqrt(variance_value)).toString(); if (datas.size() > 1) { Double sampling_std_deviation = (Double) Math.sqrt(sampling_variance_value); samplingStdDeviation = Helpers.formatTimePeriod(sampling_std_deviation.longValue()); } } this.setVariableValue("max", max); // ok this.setVariableValue("min", min); // ok this.setVariableValue("average", average); // ok this.setVariableValue("stdDeviation", stdDeviation); // ok this.setVariableValue("median", median); // ok this.setVariableValue("nb", nb); // ok this.setVariableValue("startTime", startTime); // ok this.setVariableValue("endTime", endTime); // ok this.setVariableValue("samplingAverage", samplingAverage); // ok this.setVariableValue("nbOfNull", nbOfNull); // ok this.setVariableValue("samplingStdDeviation", samplingStdDeviation); // ok }
From source file:com.redhat.lightblue.metadata.types.DoubleTypeTest.java
@Test public void testCastBigDecimal() { assertTrue(doubleType.cast(Double.MAX_VALUE) instanceof Double); }