List of usage examples for java.lang Double floatValue
public float floatValue()
From source file:org.displaytag.util.NumberUtils.java
/** * <p>Turns a string value into a java.lang.Number.</p> * * <p>First, the value is examined for a type qualifier on the end * (<code>'f','F','d','D','l','L'</code>). If it is found, it starts * trying to create successively larger types from the type specified * until one is found that can represent the value.</p> * * <p>If a type specifier is not found, it will check for a decimal point * and then try successively larger types from <code>Integer</code> to * <code>BigInteger</code> and from <code>Float</code> to * <code>BigDecimal</code>.</p> * * <p>If the string starts with <code>0x</code> or <code>-0x</code>, it * will be interpreted as a hexadecimal integer. Values with leading * <code>0</code>'s will not be interpreted as octal.</p> * * <p>Returns <code>null</code> if the string is <code>null</code>.</p> * * <p>This method does not trim the input string, i.e., strings with leading * or trailing spaces will generate NumberFormatExceptions.</p> * * @param str String containing a number, may be null * @return Number created from the string * @throws NumberFormatException if the value cannot be converted *//*from w w w . j av a2 s. co m*/ public static Number createNumber(String str) throws NumberFormatException { if (str == null) { return null; } if (StringUtils.isBlank(str)) { throw new NumberFormatException("A blank string is not a valid number"); } if (str.startsWith("--")) { // this is protection for poorness in java.lang.BigDecimal. // it accepts this as a legal value, but it does not appear // to be in specification of class. OS X Java parses it to // a wrong value. return null; } if (str.startsWith("0x") || str.startsWith("-0x")) { return createInteger(str); } char lastChar = str.charAt(str.length() - 1); String mant; String dec; String exp; int decPos = str.indexOf('.'); int expPos = str.indexOf('e') + str.indexOf('E') + 1; if (decPos > -1) { if (expPos > -1) { if (expPos < decPos || expPos > str.length()) { throw new NumberFormatException(str + " is not a valid number."); } dec = str.substring(decPos + 1, expPos); } else { dec = str.substring(decPos + 1); } mant = str.substring(0, decPos); } else { if (expPos > -1) { if (expPos > str.length()) { throw new NumberFormatException(str + " is not a valid number."); } mant = str.substring(0, expPos); } else { mant = str; } dec = null; } if (!Character.isDigit(lastChar) && lastChar != '.') { if (expPos > -1 && expPos < str.length() - 1) { exp = str.substring(expPos + 1, str.length() - 1); } else { exp = null; } //Requesting a specific type.. String numeric = str.substring(0, str.length() - 1); boolean allZeros = isAllZeros(mant) && isAllZeros(exp); switch (lastChar) { case 'l': case 'L': if (dec == null && exp == null && (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (NumberFormatException nfe) { //Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(str + " is not a valid number."); case 'f': case 'F': try { Float f = NumberUtils.createFloat(numeric); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (NumberFormatException nfe) { // ignore the bad number } //$FALL-THROUGH$ case 'd': case 'D': try { Double d = NumberUtils.createDouble(numeric); if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // ignore the bad number } try { return createBigDecimal(numeric); } catch (NumberFormatException e) { // ignore the bad number } //$FALL-THROUGH$ default: throw new NumberFormatException(str + " is not a valid number."); } } else { //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < str.length() - 1) { exp = str.substring(expPos + 1, str.length()); } else { exp = null; } if (dec == null && exp == null) { //Must be an int,long,bigint try { return createInteger(str); } catch (NumberFormatException nfe) { // ignore the bad number } try { return createLong(str); } catch (NumberFormatException nfe) { // ignore the bad number } return createBigInteger(str); } else { //Must be a float,double,BigDec boolean allZeros = isAllZeros(mant) && isAllZeros(exp); try { Float f = createFloat(str); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { return f; } } catch (NumberFormatException nfe) { // ignore the bad number } try { Double d = createDouble(str); if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // ignore the bad number } return createBigDecimal(str); } } }
From source file:org.openehr.adl.ParserTestBase.java
protected void assertCReal(Object obj, @Nullable IntervalOfReal interval, @Nullable double[] values, @Nullable Double assumed) { CReal c;//from w w w . jav a 2 s . c o m if (obj instanceof CAttribute) { c = (CReal) fetchFirst(obj); } else { c = (CReal) obj; } assertEquals("interval", json(interval), json(c.getRange())); assertEquals("list", floatSet(values), c.getList()); assertEquals("unexpected assumed value", assumed != null ? assumed.floatValue() : null, c.getAssumedValue()); }
From source file:org.openfaces.component.chart.impl.renderers.XYLineFillRenderer.java
private Paint getAreaFillPaint(XYPlot plot, Double plotWidth, Double plotHeight, Color mainColor, Color secondaryColor) {//from w w w . ja v a 2 s .co m return (plot.getOrientation() == PlotOrientation.VERTICAL) ? new GradientPaint(0.0f, 0.0f, mainColor, 0.0f, plotHeight.floatValue(), secondaryColor, true) : new GradientPaint(plotWidth.floatValue(), 0.0f, mainColor, 0.0f, 0.0f, secondaryColor, true); }
From source file:com.shollmann.igcparser.ui.activity.FlightPreviewActivity.java
private void animateMarker() { final Handler handler = new Handler(); final long start = SystemClock.uptimeMillis(); duration = 300000;//from ww w . j a va2 s.c om final Interpolator interpolator = new LinearInterpolator(); handler.post(new Runnable() { int i = 0; @Override public void run() { long elapsed = SystemClock.uptimeMillis() - start; float t = interpolator.getInterpolation((float) elapsed / duration); if (i < listLatLngPoints.size()) { Double heading = SphericalUtil.computeHeading(markerGlider.getPosition(), listLatLngPoints.get(i)); markerGlider.setRotation(heading.floatValue()); markerGlider.setPosition(listLatLngPoints.get(i)); } i++; if (t < 1.0 && i < listLatLngPoints.size() && !isFinishReplay) { handler.postDelayed(this, replaySpeed); } else { finishReplay(); } } }); }
From source file:com.act.lcms.v2.fullindex.Builder.java
protected void extractTriples(Iterator<LCMSSpectrum> iter, List<MZWindow> windows) throws RocksDBException, IOException { /* Warning: this method makes heavy use of ByteBuffers to perform memory efficient collection of values and * conversion of those values into byte arrays that RocksDB can consume. If you haven't already, go read this * tutorial on ByteBuffers: http://mindprod.com/jgloss/bytebuffer.html *//from w w w.j a va 2 s. com * ByteBuffers are quite low-level structures, and they use some terms you need to watch out for: * capacity: The total number of bytes in the array backing the buffer. Don't write more than this. * position: The next index in the buffer to read or write a byte. Moves with each read or write op. * limit: A mark of where the final byte in the buffer was written. Don't read past this. * The remaining() call is affected by the limit. * mark: Ignore this for now, we don't use it. (We'll always, always read buffers from 0.) * * And here are some methods that we'll use often: * clear: Set position = 0, limit = 0. Pretend the buffer is empty, and is ready for more writes. * flip: Set limit = position, then position = 0. This remembers how many bytes were written to the buffer * (as the current position), and then puts the position at the beginning. * Always call this after the write before a read. * rewind: Set position = 0. Buffer is ready for reading, but unless the limit was set we might now know how * many bytes there are to read. Always call flip() before rewind(). Can rewind many times to re-read * the buffer repeatedly. * remaining: How many bytes do we have left to read? Requires an accurate limit value to avoid garbage bytes. * reset: Don't use this. It uses the mark, which we don't need currently. * * Write/read patterns look like: * buffer.clear(); // Clear out anything already in the buffer. * buffer.put(thing1).put(thing2)... // write a bunch of stuff * buffer.flip(); // Prep for reading. Call *once*! * * while (buffer.hasRemaining()) { buffer.get(); } // Read a bunch of stuff. * buffer.rewind(); // Ready for reading again! * while (buffer.hasRemaining()) { buffer.get(); } // Etc. * buffer.reset(); // Forget what was written previously, buffer is ready for reuse. * * We use byte buffers because they're fast, efficient, and offer incredibly convenient means of serializing a * stream of primitive types to their minimal binary representations. The same operations on objects + object * streams require significantly more CPU cycles, consume more memory, and tend to be brittle (i.e. if a class * definition changes slightly, serialization may break). Since the data we're dealing with is pretty simple, we * opt for the low-level approach. */ /* Because we'll eventually use the window indices to map a mz range to a list of triples that fall within that * range, verify that all of the indices are unique. If they're not, we'll end up overwriting the data in and * corrupting the structure of the index. */ ensureUniqueMZWindowIndices(windows); // For every mz window, allocate a buffer to hold the indices of the triples that fall in that window. ByteBuffer[] mzWindowTripleBuffers = new ByteBuffer[windows.size()]; for (int i = 0; i < mzWindowTripleBuffers.length; i++) { /* Note: the mapping between these buffers and their respective mzWindows is purely positional. Specifically, * mzWindows.get(i).getIndex() != i, but mzWindowTripleBuffers[i] belongs to mzWindows.get(i). We'll map windows * indices to the contents of mzWindowTripleBuffers at the very end of this function. */ mzWindowTripleBuffers[i] = ByteBuffer.allocate(Long.BYTES * 4096); // Start with 4096 longs = 8 pages per window. } // Every TMzI gets an index which we'll use later when we're querying by m/z and time. long counter = -1; // We increment at the top of the loop. // Note: we could also write to an mmapped file and just track pointers, but then we might lose out on compression. // We allocate all the buffers strictly here, as we know how many bytes a long and a triple will take. Then reuse! ByteBuffer counterBuffer = ByteBuffer.allocate(Long.BYTES); ByteBuffer valBuffer = ByteBuffer.allocate(TMzI.BYTES); List<Float> timepoints = new ArrayList<>(2000); // We can be sloppy here, as the count is small. /* We use a sweep-line approach to scanning through the m/z windows so that we can aggregate all intensities in * one pass over the current LCMSSpectrum (this saves us one inner loop in our extraction process). The m/z * values in the LCMSSpectrum become our "critical" or "interesting points" over which we sweep our m/z ranges. * The next window in m/z order is guaranteed to be the next one we want to consider since we address the points * in m/z order as well. As soon as we've passed out of the range of one of our windows, we discard it. It is * valid for a window to be added to and discarded from the working queue in one application of the work loop. */ LinkedList<MZWindow> tbdQueueTemplate = new LinkedList<>(windows); // We can reuse this template to init the sweep. int spectrumCounter = 0; while (iter.hasNext()) { LCMSSpectrum spectrum = iter.next(); float time = spectrum.getTimeVal().floatValue(); // This will record all the m/z + intensity readings that correspond to this timepoint. Exactly sized too! ByteBuffer triplesForThisTime = ByteBuffer.allocate(Long.BYTES * spectrum.getIntensities().size()); // Batch up all the triple writes to reduce the number of times we hit the disk in this loop. // Note: huge success! RocksDBAndHandles.RocksDBWriteBatch<ColumnFamilies> writeBatch = dbAndHandles.makeWriteBatch(); // Initialize the sweep line lists. Windows go follow: tbd -> working -> done (nowhere). LinkedList<MZWindow> workingQueue = new LinkedList<>(); LinkedList<MZWindow> tbdQueue = (LinkedList<MZWindow>) tbdQueueTemplate.clone(); // clone is in the docs, so okay! for (Pair<Double, Double> mzIntensity : spectrum.getIntensities()) { // Very important: increment the counter for every triple. Otherwise we'll overwrite triples = Very Bad (tm). counter++; // Brevity = soul of wit! Double mz = mzIntensity.getLeft(); Double intensity = mzIntensity.getRight(); // Reset the buffers so we end up re-using the few bytes we've allocated. counterBuffer.clear(); // Empty (virtually). counterBuffer.putLong(counter); counterBuffer.flip(); // Prep for reading. valBuffer.clear(); // Empty (virtually). TMzI.writeToByteBuffer(valBuffer, time, mz, intensity.floatValue()); valBuffer.flip(); // Prep for reading. // First, shift any applicable ranges onto the working queue based on their minimum mz. while (!tbdQueue.isEmpty() && tbdQueue.peekFirst().getMin() <= mz) { workingQueue.add(tbdQueue.pop()); } // Next, remove any ranges we've passed. while (!workingQueue.isEmpty() && workingQueue.peekFirst().getMax() < mz) { workingQueue.pop(); // TODO: add() this to a recovery queue which can then become the tbdQueue. Edge cases! } /* In the old indexed trace extractor world, we could bail here if there were no target m/z's in our window set * that matched with the m/z of our current mzIntensity. However, since we're now also recording the links * between timepoints and their (t, m/z, i) triples, we need to keep on keepin' on regardless of whether we have * any m/z windows in the working set right now. */ // The working queue should now hold only ranges that include this m/z value. Sweep line swept! /* Now add this intensity to the buffers of all the windows in the working queue. Note that since we're only * storing the *index* of the triple, these buffers are going to consume less space than they would if we * stored everything together. */ for (MZWindow window : workingQueue) { // TODO: count the number of times we add intensities to each window's accumulator for MS1-style warnings. counterBuffer.rewind(); // Already flipped. mzWindowTripleBuffers[window.getIndex()] = // Must assign when calling appendOrRealloc. Utils.appendOrRealloc(mzWindowTripleBuffers[window.getIndex()], counterBuffer); } // We flipped after reading, so we should be good to rewind (to be safe) and write here. counterBuffer.rewind(); valBuffer.rewind(); writeBatch.put(ColumnFamilies.ID_TO_TRIPLE, Utils.toCompactArray(counterBuffer), Utils.toCompactArray(valBuffer)); // Rewind again for another read. counterBuffer.rewind(); triplesForThisTime.put(counterBuffer); } writeBatch.write(); assert (triplesForThisTime.position() == triplesForThisTime.capacity()); ByteBuffer timeBuffer = ByteBuffer.allocate(Float.BYTES).putFloat(time); timeBuffer.flip(); // Prep both bufers for reading so they can be written to the DB. triplesForThisTime.flip(); dbAndHandles.put(ColumnFamilies.TIMEPOINT_TO_TRIPLES, Utils.toCompactArray(timeBuffer), Utils.toCompactArray(triplesForThisTime)); timepoints.add(time); spectrumCounter++; if (spectrumCounter % 1000 == 0) { LOGGER.info("Extracted %d time spectra", spectrumCounter); } } LOGGER.info("Extracted %d total time spectra", spectrumCounter); // Now write all the mzWindow to triple indexes. RocksDBAndHandles.RocksDBWriteBatch<ColumnFamilies> writeBatch = dbAndHandles.makeWriteBatch(); ByteBuffer idBuffer = ByteBuffer.allocate(Integer.BYTES); for (int i = 0; i < mzWindowTripleBuffers.length; i++) { idBuffer.clear(); idBuffer.putInt(windows.get(i).getIndex()); idBuffer.flip(); ByteBuffer triplesBuffer = mzWindowTripleBuffers[i]; triplesBuffer.flip(); // Prep for read. writeBatch.put(ColumnFamilies.WINDOW_ID_TO_TRIPLES, Utils.toCompactArray(idBuffer), Utils.toCompactArray(triplesBuffer)); } writeBatch.write(); dbAndHandles.put(ColumnFamilies.TIMEPOINTS, TIMEPOINTS_KEY, Utils.floatListToByteArray(timepoints)); dbAndHandles.flush(true); }
From source file:org.gradoop.flink.datagen.transactions.foodbroker.config.FoodBrokerConfig.java
/** * Loads the relative influence value if two master data objects are located in the same city. * * @return float representation of the value */// ww w.j a va2 s .co m public float getMasterDataSameCityInfluence() { Double ratio = 1.0d; try { ratio = getMasterDataConfigNode("Influence").getDouble("sameCityInfluence"); } catch (JSONException e) { e.printStackTrace(); } return ratio.floatValue(); }
From source file:org.gradoop.flink.datagen.transactions.foodbroker.config.FoodBrokerConfig.java
/** * Loads the relative influence value if two master data objects belong to the same holding. * * @return float representation of the value *///from w ww .j a v a 2 s.c om public float getMasterDataSameHoldingInfluence() { Double ratio = 1.0d; try { ratio = getMasterDataConfigNode("Influence").getDouble("sameCityInfluence"); } catch (JSONException e) { e.printStackTrace(); } return ratio.floatValue(); }
From source file:org.richfaces.tests.metamer.ftest.AbstractWebDriverTest.java
public static <T extends Number & Comparable<T>> Number countMedian(List<T> values) { assertTrue(values.size() > 0);// www . j a va2 s. c om if (values.size() == 1) { return values.get(0); } final List<T> copy = Lists.newArrayList(values); Collections.sort(copy); int middleIndex = (copy.size() - 1) / 2; double result = copy.get(middleIndex).doubleValue(); if (copy.size() % 2 == 0) { result = (result + copy.get(middleIndex + 1).doubleValue()) / 2.0; } final Double median = Double.valueOf(result); return new Number() { private static final long serialVersionUID = 1L; @Override public int intValue() { return median.intValue(); } @Override public long longValue() { return median.longValue(); } @Override public float floatValue() { return median.floatValue(); } @Override public double doubleValue() { return median.doubleValue(); } @Override public String toString() { return median.doubleValue() + " from values(sorted) " + copy.toString() + '.'; } }; }
From source file:org.gradoop.flink.datagen.transactions.foodbroker.config.FoodBrokerConfig.java
/** * Loads the "assistant" type relative influence value of a master data object. * * @return float representation of the value *///w w w .j a v a 2 s.com public float getMasterDataTypeAssistantInfluence() { Double ratio = 1.0d; try { ratio = getMasterDataConfigNode("Influence").getDouble("assistantInfluence"); } catch (JSONException e) { e.printStackTrace(); } return ratio.floatValue(); }
From source file:org.gradoop.flink.datagen.transactions.foodbroker.config.FoodBrokerConfig.java
/** * Loads the "assistant" type relative influence value of a master data object. * * @return float representation of the value *///from w w w. j ava 2 s . c o m public float getMasterDataTypeSupervisorInfluence() { Double ratio = 1.0d; try { ratio = getMasterDataConfigNode("Influence").getDouble("supervisorInfluence"); } catch (JSONException e) { e.printStackTrace(); } return ratio.floatValue(); }