Java examples for Machine Learning AI:weka
Weka Filter Setting
import weka.classifiers.evaluation.Evaluation; import weka.classifiers.trees.J48; import weka.core.Debug.Random; import weka.core.Instances; import weka.core.Utils; import weka.core.converters.ConverterUtils.DataSource; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; public class WekaFilterSetting { public static void main(String[] args) throws Exception { DataSource source = new DataSource( "bank-data.arff"); Instances instancesTrain = source.getDataSet(); "bank-data.arff"); Instances instancesTest = source.getDataSet(); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); Filter remove = new Remove(); String[] options = Utils.splitOptions("-R 1"); remove.setOptions(options);//from w w w . java2 s . c o m instancesTrain = Filter.useFilter(instancesTrain, remove); instancesTest = Filter.useFilter(instancesTest, remove); options = Utils.splitOptions("-C 0.25 -M 2"); classifier.setOptions(options); classifier.buildClassifier(instancesTrain); Evaluation eval = new Evaluation(instancesTrain); eval.evaluateModel(classifier, instancesTest); System.out.println(eval.errorRate()); eval = new Evaluation(instancesTrain); eval.crossValidateModel(classifier, instancesTrain, 10, new Random( 1)); System.out.println(eval.errorRate()); } }