Java examples for Machine Learning AI:weka
use weka classifiers LibSVM
import java.io.File; import weka.classifiers.Classifier; import weka.classifiers.evaluation.Evaluation; import weka.classifiers.functions.LibSVM; import weka.core.Instances; import weka.core.converters.ArffLoader; public class WekaEvaluation { public static void main(String[] args) { try {/* w w w . j a v a 2 s. co m*/ File inputFile = new File( "bank-train.arff"); atf.setFile(inputFile); Instances instancesTrain = atf.getDataSet(); "bank-test.arff"); Instances instancesTest = atf.getDataSet(); .setClassIndex(instancesTrain.numAttributes() - 1); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); Classifier classifier1 = (Classifier) Class.forName( "weka.classifiers.bayes.NaiveBayes").newInstance(); "weka.classifiers.trees.J48").newInstance(); Classifier classifier3 = (Classifier) Class.forName( "weka.classifiers.rules.ZeroR").newInstance(); LibSVM classifier4 = new LibSVM(); classifier1.buildClassifier(instancesTrain); classifier2.buildClassifier(instancesTrain); classifier3.buildClassifier(instancesTrain); classifier4.buildClassifier(instancesTrain); Evaluation eval = new Evaluation(instancesTrain); eval.evaluateModel(classifier1, instancesTrain); System.out.println(eval.errorRate()); eval.evaluateModel(classifier2, instancesTest); System.out.println(eval.errorRate()); eval.evaluateModel(classifier3, instancesTest); System.out.println(eval.errorRate()); eval.evaluateModel(classifier4, instancesTest); System.out.println(eval.errorRate()); } catch (Exception e) { e.printStackTrace(); } } }