Java examples for Machine Learning AI:weka
Weka Attribute Selected Classifier
import weka.attributeSelection.CfsSubsetEval; import weka.attributeSelection.GreedyStepwise; import weka.classifiers.evaluation.Evaluation; import weka.classifiers.meta.AttributeSelectedClassifier; import weka.classifiers.trees.J48; import weka.core.Instances; import weka.core.Debug.Random; import weka.core.converters.ConverterUtils.DataSource; public class WekaAttributeSelectedClassifier { public static void main(String[] args) throws Exception { DataSource source = new DataSource( "bank-train.arff"); Instances data = source.getDataSet(); AttributeSelectedClassifier classifier = new AttributeSelectedClassifier(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); J48 base = new J48(); classifier.setClassifier(base);//ww w .ja va 2 s .c o m classifier.setEvaluator(eval); classifier.setSearch(search); // 10-fold cross-validation Evaluation evaluation = new Evaluation(data); evaluation.crossValidateModel(classifier, data, 10, new Random(1)); System.out.println(evaluation.toSummaryString()); } }