Java examples for Machine Learning AI:weka
use weka Weka Cross Validation
import java.io.File; import weka.classifiers.Classifier; import weka.classifiers.evaluation.Evaluation; import weka.classifiers.functions.LibSVM; import weka.core.Debug.Random; import weka.core.Instances; import weka.core.SerializationHelper; import weka.core.converters.ArffLoader; import weka.core.converters.ConverterUtils.DataSource; public class WekaCrossValidation { public static void main(String[] args) throws Exception { File inputFile = new File( "bank-train.arff"); atf.setFile(inputFile);/*from w w w. j a va 2 s. c o m*/ Instances instancesTrain = atf.getDataSet(); "bank-test.arff"); Instances instancesTest = source.getDataSet(); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); // libsvm Classifier classifier = new LibSVM(); classifier.buildClassifier(instancesTrain); SerializationHelper.write( "libsvm.model", classifier); System.out.println(classifier.classifyInstance(instancesTest .instance(5))); Evaluation eval = new Evaluation(instancesTrain); eval.crossValidateModel(classifier, instancesTrain, 10, new Random( 1)); System.out.println(eval.errorRate()); classifier = (Classifier) SerializationHelper .read("libsvm.model"); classifier.buildClassifier(instancesTrain); System.out.println(classifier.classifyInstance(instancesTest .instance(5))); eval = new Evaluation(instancesTrain); eval.crossValidateModel(classifier, instancesTrain, 10, new Random( 1)); System.out.println(eval.errorRate()); } }