Java examples for Machine Learning AI:weka
use weka classifiers SerializedClassifier
import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.meta.Dagging; import weka.classifiers.misc.SerializedClassifier; import weka.classifiers.rules.JRip; import weka.classifiers.trees.J48; import weka.core.Instances; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; public class Deserialization { public static void main(String[] args) throws Exception { SerializedClassifier cls = new SerializedClassifier(); cls.setModelFile(new File("hypothyroid2.model")); Instances train = new Instances(new BufferedReader(new FileReader("hypothyroid2_train.arff"))); Instances test = new Instances(new BufferedReader(new FileReader("hypothyroid2_test.arff"))); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(test.numAttributes() - 1); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test);/* w ww. j av a 2 s . c om*/ Double error_c = eval.errorRate(); Classifier cls_2 = new NaiveBayes(); Instances train_nb = new Instances(new BufferedReader(new FileReader("hypothyroid2_train.arff"))); Instances test_nb = new Instances(new BufferedReader(new FileReader("hypothyroid2_test.arff"))); train_nb.setClassIndex(train_nb.numAttributes() - 1); test_nb.setClassIndex(test_nb.numAttributes() - 1); cls_2.buildClassifier(train_nb); Evaluation eval_nb = new Evaluation(train_nb); eval_nb.evaluateModel(cls_2, test_nb); Double error_nb = eval_nb.errorRate(); System.out.println(error_c / error_nb); } }