Java examples for Machine Learning AI:weka
use weka attribute Selection CfsSubsetEval
import weka.attributeSelection.BestFirst; import weka.attributeSelection.CfsSubsetEval; import weka.classifiers.meta.AdaBoostM1; import weka.core.Instances; import weka.filters.Filter; import weka.filters.supervised.attribute.AttributeSelection; import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.PrintWriter; public class BaggingwithLMT { public static void main(String[] args) throws Exception { Instances train = new Instances(new BufferedReader(new FileReader( "mfeat-factors_train.arff"))); Instances test = new Instances(new BufferedReader(new FileReader( "mfeat-factors_test.arff"))); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(test.numAttributes() - 1); AttributeSelection filter = new AttributeSelection(); BestFirst search = new BestFirst(); search.setOptions(weka.core.Utils.splitOptions("-D 2 -N 10")); filter.setEvaluator(new CfsSubsetEval()); filter.setSearch(search);/*from ww w . j av a2 s . c om*/ filter.setInputFormat(train); Instances newtrain = Filter.useFilter(train, filter); Instances newtest = Filter.useFilter(test, filter); newtrain.setClassIndex(newtrain.numAttributes() - 1); newtest.setClassIndex(newtest.numAttributes() - 1); //Classifier [] ClassifierArray=new Classifier[3]; //ClassifierArray[1]=new J48(); //ClassifierArray[0]=new NaiveBayes(); //ClassifierArray[2]=new NBTree(); AdaBoostM1 vs = new AdaBoostM1(); //find optimal parameter vs.setOptions(weka.core.Utils .splitOptions("-P 100 -S 1 -I 10 -W \"weka.classifiers.trees.LMT\"")); //String[] options=new String[3]; //options[2]="-R MAJ"; //options[1]="-B weka.classifiers.functions.SMO -B weka.classifiers.bayes.NaiveBayes"; //options[0]="-S <2>"; //vs.setOptions(options); //vs.setClassifiers(ClassifierArray); vs.buildClassifier(newtrain); //find optimal parameter //ps.addCVParameter("F 1 5 5"); //ps.addCVParameter("S 1 10 10"); //Dagging cls = new Dagging(); //change the base classifier //cls.setClassifier(new NBTree()); //change the parameter for dagging //cls.setNumFolds(1); //cls.setSeed(7); //cls.buildClassifier(train); //System.out.println(vs.getCombinationRule()); //System.out.println(vs.getOptions()); PrintWriter pw = new PrintWriter(new FileWriter( "mfeat-factors-L5.txt")); //System.out.println(Utils.joinOptions(ps.getBestClassifierOptions())); for (int i = 0; i < newtest.numInstances(); i++) { double pred = vs.classifyInstance(newtest.instance(i)); pw.println(pred); } pw.close(); //weka.core.SerializationHelper.write("/ionosphere.model", vs); } }