Java examples for Machine Learning AI:weka
Performs a single run of cross-validation on weka
/*// ww w . j a va 2 s .com * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ import weka.core.Instances; //import weka.core.converters.ConverterUtils.DataSource; import weka.core.Utils; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import java.io.FileReader; import java.util.Random; /** * Performs a single run of cross-validation. Outputs the Confusion matrices * for each single fold. * * Command-line parameters: * <ul> * <li>-t filename - the dataset to use</li> * <li>-x int - the number of folds to use</li> * <li>-s int - the seed for the random number generator</li> * <li>-c int - the class index, "first" and "last" are accepted as well; * "last" is used by default</li> * <li>-W classifier - classname and options, enclosed by double quotes; * the classifier to cross-validate</li> * </ul> * * Example command-line: * <pre> * java CrossValidationSingleRun -t anneal.arff -c last -x 10 -s 1 -W "weka.classifiers.trees.J48 -C 0.25" * </pre> * * @author FracPete (fracpete at waikato dot ac dot nz) */ public class CrossValidationSingleRunVariant { public static void main(String[] args) throws Exception { // loads data and set class index Instances data = new Instances(new FileReader(Utils.getOption("t", args))); String clsIndex = Utils.getOption("c", args); if (clsIndex.length() == 0) clsIndex = "last"; if (clsIndex.equals("first")) data.setClassIndex(0); else if (clsIndex.equals("last")) data.setClassIndex(data.numAttributes() - 1); else data.setClassIndex(Integer.parseInt(clsIndex) - 1); // classifier String[] tmpOptions; String classname; tmpOptions = Utils.splitOptions(Utils.getOption("W", args)); classname = tmpOptions[0]; tmpOptions[0] = ""; Classifier cls = (Classifier) Utils.forName(Classifier.class, classname, tmpOptions); // other options int seed = Integer.parseInt(Utils.getOption("s", args)); int folds = Integer.parseInt(Utils.getOption("x", args)); // randomize data Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); if (randData.classAttribute().isNominal()) randData.stratify(folds); // perform cross-validation System.out.println(); System.out.println("=== Setup ==="); System.out.println("Classifier: " + cls.getClass().getName() + " " + Utils.joinOptions(cls.getOptions())); System.out.println("Dataset: " + data.relationName()); System.out.println("Folds: " + folds); System.out.println("Seed: " + seed); System.out.println(); Evaluation evalAll = new Evaluation(randData); for (int n = 0; n < folds; n++) { Evaluation eval = new Evaluation(randData); Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // the above code is used by the StratifiedRemoveFolds filter, the // code below by the Explorer/Experimenter: // Instances train = randData.trainCV(folds, n, rand); // build and evaluate classifier Classifier clsCopy = Classifier.makeCopy(cls); clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); evalAll.evaluateModel(clsCopy, test); // output evaluation System.out.println(); System.out.println(eval .toMatrixString("=== Confusion matrix for fold " + (n + 1) + "/" + folds + " ===\n")); } // output evaluation System.out.println(); System.out.println(evalAll.toSummaryString("=== " + folds + "-fold Cross-validation ===", false)); } }