Java examples for Machine Learning AI:weka
Use weka classifiers functions LibSVM and SMO
import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.functions.LibSVM; import weka.classifiers.functions.SMO; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; public class Classifier { public static void main(String[] args) throws Exception { DataSource source = new DataSource("iris.arff"); Instances dataset = source.getDataSet(); dataset.setClassIndex(dataset.numAttributes() - 1); NaiveBayes nb = new NaiveBayes(); nb.buildClassifier(dataset);//from w w w. j a v a2 s . c o m Evaluation eval = new Evaluation(dataset); eval.evaluateModel(nb, dataset); System.out.println(eval.toSummaryString()); SMO svm = new SMO(); svm.buildClassifier(dataset); Evaluation eval2 = new Evaluation(dataset); eval2.evaluateModel(svm, dataset); System.out.println(eval2.toSummaryString()); LibSVM libsvm = new LibSVM(); String[] options = new String[8]; options[0] = "-S"; options[1] = "0"; options[2] = "-K"; options[3] = "2"; options[4] = "-G"; options[5] = "1.0"; options[6] = "-C"; options[7] = "1.0"; libsvm.setOptions(options); libsvm.buildClassifier(dataset); Evaluation eval3 = new Evaluation(dataset); eval3.evaluateModel(libsvm, dataset); System.out.println(eval3.toSummaryString()); } }