Java java.lang Math Function

Java examples for java.lang:Math Function

Description

Click the following links for the tutorial for java.lang and Math Function.

  1. A variant of the gamma function.
  2. Returns Gamma function of x.
  3. Fast Trigonometry functions for x86.
  4. Built in test case for the binomial coefficient function.
  5. gamma-function(x) using Lanczos approximation formula
  6. Returns the probability density function of a double with mean 0 variance 1.
  7. square Of Sum First N
  8. sum First N Divisible By M


  9. sum Of Proper Divisors
  10. Get divisors
  11. is Pandigital
  12. is Pentagonal
  13. Returns n!.
  14. Returns the largest integer less than or equal to the specified float.
  15. fast Inverse Sqrt
  16. This method is a *lot* faster than using (int)Math.floor(x).


  17. Returns the Cartesian coordinate for one axis of a point that is defined by a given triangle and two normalized barycentric (areal) coordinates.
  18. Returns the Jensen-Shannon divergence.
  19. Returns the KL divergence, K(p1 || p2).
  20. Returns mercator Y corresponding to latitude.
  21. Returns the approximate circumference of the ellipse defined by the specified minor and major axes.
  22. Returns chi-square probability.
  23. This returns the collision points between a line and a circle.
  24. Returns Least absolute deviation DV = sqrt ( 1/N * SUM | Xi - mu | )
  25. Returns median
  26. Returns k-quantile of the data.
  27. Returns ceil (nNumerator / nDenominator).
  28. Returns the phred-scaled error probability of no errors given a set of independent error sources
  29. Returns the largest lower limit of quotient.
  30. For a given angle in radians, return the equivalent angle in the range [-PI, PI].
  31. Given three points, this method returns true if they are collinear, and false otherwise.
  32. Returns the covariance between the first two columns of data.
  33. inverse-gamma-distribution-pdf(x) with given shape and scale
  34. normal-cdf(z) with mu = 0, stddev = 1
  35. binomial Coefficient
  36. hyper Geometric
  37. A faster floor implementation that Math.floor.
  38. Finds the integer x such that x=2q for some integer q, and x ? a.
  39. determine if two points are close to each other (no sqrt=faster)
  40. Creates a single normalized impulse signal with its peak at t=1/k.