Logistic regression based classification using apache spark - Java Big Data

Java examples for Big Data:apache spark

Description

Logistic regression based classification using apache spark

Demo Code

/*/* w  w  w.  j a va 2  s .  co  m*/
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Random;
import java.util.regex.Pattern;

/**
 * Logistic regression based classification.
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
 * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
 */
public final class JavaHdfsLR {

    private static final int D = 10; // Number of dimensions
    private static final Random rand = new Random(42);

    static void showWarning() {
        String warning = "WARN: This is a naive implementation of Logistic Regression "
                + "and is given as an example!\n"
                + "Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD "
                + "or org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS "
                + "for more conventional use.";
        System.err.println(warning);
    }

    static class DataPoint implements Serializable {
        DataPoint(double[] x, double y) {
            this.x = x;
            this.y = y;
        }

        double[] x;
        double y;
    }

    static class ParsePoint implements Function<String, DataPoint> {
        private static final Pattern SPACE = Pattern.compile(" ");

        @Override
        public DataPoint call(String line) {
            String[] tok = SPACE.split(line);
            double y = Double.parseDouble(tok[0]);
            double[] x = new double[D];
            for (int i = 0; i < D; i++) {
                x[i] = Double.parseDouble(tok[i + 1]);
            }
            return new DataPoint(x, y);
        }
    }

    static class VectorSum implements
            Function2<double[], double[], double[]> {
        @Override
        public double[] call(double[] a, double[] b) {
            double[] result = new double[D];
            for (int j = 0; j < D; j++) {
                result[j] = a[j] + b[j];
            }
            return result;
        }
    }

    static class ComputeGradient implements Function<DataPoint, double[]> {
        private final double[] weights;

        ComputeGradient(double[] weights) {
            this.weights = weights;
        }

        @Override
        public double[] call(DataPoint p) {
            double[] gradient = new double[D];
            for (int i = 0; i < D; i++) {
                double dot = dot(weights, p.x);
                gradient[i] = (1 / (1 + Math.exp(-p.y * dot)) - 1) * p.y
                        * p.x[i];
            }
            return gradient;
        }
    }

    public static double dot(double[] a, double[] b) {
        double x = 0;
        for (int i = 0; i < D; i++) {
            x += a[i] * b[i];
        }
        return x;
    }

    public static void printWeights(double[] a) {
        System.out.println(Arrays.toString(a));
    }

    public static void main(String[] args) {

        if (args.length < 2) {
            System.err.println("Usage: JavaHdfsLR <file> <iters>");
            System.exit(1);
        }

        showWarning();

        SparkConf sparkConf = new SparkConf().setAppName("JavaHdfsLR");
        JavaSparkContext sc = new JavaSparkContext(sparkConf);
        JavaRDD<String> lines = sc.textFile(args[0]);
        JavaRDD<DataPoint> points = lines.map(new ParsePoint()).cache();
        int ITERATIONS = Integer.parseInt(args[1]);

        // Initialize w to a random value
        double[] w = new double[D];
        for (int i = 0; i < D; i++) {
            w[i] = 2 * rand.nextDouble() - 1;
        }

        System.out.print("Initial w: ");
        printWeights(w);

        for (int i = 1; i <= ITERATIONS; i++) {
            System.out.println("On iteration " + i);

            double[] gradient = points.map(new ComputeGradient(w)).reduce(
                    new VectorSum());

            for (int j = 0; j < D; j++) {
                w[j] -= gradient[j];
            }

        }

        System.out.print("Final w: ");
        printWeights(w);
        sc.stop();
    }
}

Related Tutorials