Java examples for Big Data:apache spark
Computes an approximation to pi using apache spark
/*//from w w w . j ava 2 s .c o m * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.examples; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import java.util.ArrayList; import java.util.List; /** * Computes an approximation to pi * Usage: JavaSparkPi [slices] * https://github.com/apache/spark/blob/master/pom.xml */ public final class JavaSparkPi { static boolean runOnCluster = false; public static void main(String[] args) throws Exception { SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi"); int slices = 0; JavaSparkContext jsc = null; if (!runOnCluster) { sparkConf.setMaster("local[2]"); sparkConf .setJars(new String[] { "target/eduonix_spark-deploy.jar" }); slices = 10; jsc = new JavaSparkContext(sparkConf); } else { slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2; jsc = new JavaSparkContext(sparkConf); } int n = 100000 * slices; List<Integer> l = new ArrayList<Integer>(n); for (int i = 0; i < n; i++) { l.add(i); } JavaRDD<Integer> dataSet = jsc.parallelize(l, slices); int count = dataSet.map(new Function<Integer, Integer>() { @Override public Integer call(Integer integer) { double x = Math.random() * 2 - 1; double y = Math.random() * 2 - 1; return (x * x + y * y < 1) ? 1 : 0; } }).reduce(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer integer, Integer integer2) { return integer + integer2; } }); System.out.println("Pi is roughly " + 4.0 * count / n); jsc.stop(); } }