Counts words in UTF8 encoded, new line delimited text received from the network every second using apache spark - Java Big Data

Java examples for Big Data:apache spark

Description

Counts words in UTF8 encoded, new line delimited text received from the network every second using apache spark

Demo Code

/*/*from   w  w  w .j  a  va2  s .  c o m*/
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package eduonix.spark.streaming;

import org.apache.spark.examples.streaming.StreamingExamples;
import scala.Tuple2;
import com.google.common.collect.Lists;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import java.util.regex.Pattern;

/**
 * Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
 *
 * Usage: JavaNetworkWordCount <hostname> <port>
 * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
 *
 * To run this on your local machine, you need to first run a Netcat server
 *    `$ nc -lk 9999`
 * and then run the example
 *    `$ bin/run-example eduonix.spark.streaming.JavaNetworkWordCount localhost 9999`
 */
public final class JavaNetworkWordCount {
    private static final Pattern SPACE = Pattern.compile(" ");

    public static void main(String[] args) {
        if (args.length < 2) {
            System.err
                    .println("Usage: JavaNetworkWordCount <hostname> <port>");
            System.exit(1);
        }

        StreamingExamples.setStreamingLogLevels();

        // Create the context with a 1 second batch size
        SparkConf sparkConf = new SparkConf()
                .setAppName("JavaNetworkWordCount");
        JavaStreamingContext ssc = new JavaStreamingContext(sparkConf,
                Durations.seconds(1));

        // Create a JavaReceiverInputDStream on target ip:port and count the
        // words in input stream of \n delimited text (eg. generated by 'nc')
        // Note that no duplication in storage level only for running locally.
        // Replication necessary in distributed scenario for fault tolerance.
        JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
                args[0], Integer.parseInt(args[1]),
                StorageLevels.MEMORY_AND_DISK_SER);
        JavaDStream<String> words = lines
                .flatMap(new FlatMapFunction<String, String>() {
                    @Override
                    public Iterable<String> call(String x) {
                        return Lists.newArrayList(SPACE.split(x));
                    }
                });
        JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
                new PairFunction<String, String, Integer>() {
                    @Override
                    public Tuple2<String, Integer> call(String s) {
                        return new Tuple2<String, Integer>(s, 1);
                    }
                }).reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
            }
        });

        wordCounts.print();
        ssc.start();
        ssc.awaitTermination();
    }
}

Related Tutorials