List of utility methods to do stddev
double | getStandardDeviation(double meanValue, ArrayList get Standard Deviation if (values.isEmpty()) { return -1.0; double sum = 0.0; for (Double value : values) { sum += Math.pow(meanValue - value, 2.0); return Math.sqrt(sum / values.size()); ... |
double | standardDeviation(double[] data) standard Deviation return standardDeviation(data, mean(data));
|
double | standardDeviation(double[] data, int opt) Compute the standard deviation of the given data, this function can deal with NaNs if (opt == 0) return Math.sqrt(variance(data, opt)); else return Math.sqrt(variance(data, opt)); |
Double | std(Collection std return std(mean(dist), dist, populationStd);
|
double | std(double a[]) std double V = var(a); return Math.sqrt(V); |
double | std(double[] a) Returns the standard variance. return std(a, a.length);
|
double | std(double[] arr) std double m = mean(arr); double sum = 0.0; for (int i = 0; i < arr.length; ++i) { sum += Math.pow(arr[i] - m, 2); return Math.sqrt(sum / arr.length); |
double | std(double[] array) Returns the standard deviation of an array using the Welford's method. if (array.length == 0) return 0; double M = 0.0; double S = 0.0; int k = 1; for (double value : array) { double tmpM = M; M += (value - tmpM) / k; ... |
double | std(final double[] vec) Computes the standard deviation of the given values, that is the square root of the sample variance. assert vec != null; return Math.sqrt(var(vec)); |
double | std(final double[] x, final int begin, final int end) std int N = 0; double mean = 0d; for (int i = Math.max(0, begin); i < Math.min(x.length - 1, end); i++) { mean += x[i]; N++; mean /= N; double std = 0d; ... |