weka.filters.unsupervised.attribute.Discretize.java Source code

Java tutorial

Introduction

Here is the source code for weka.filters.unsupervised.attribute.Discretize.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Discretize.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.filters.unsupervised.attribute;

import java.util.*;

import weka.core.*;
import weka.core.Capabilities.Capability;
import weka.filters.UnsupervisedFilter;

/**
 * <!-- globalinfo-start --> An instance filter that discretizes a range of
 * numeric attributes in the dataset into nominal attributes. Discretization is
 * by simple binning. Skips the class attribute if set.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -unset-class-temporarily
 *  Unsets the class index temporarily before the filter is
 *  applied to the data.
 *  (default: no)
 * </pre>
 * 
 * <pre>
 * -B &lt;num&gt;
 *  Specifies the (maximum) number of bins to divide numeric attributes into.
 *  (default = 10)
 * </pre>
 * 
 * <pre>
 * -M &lt;num&gt;
 *  Specifies the desired weight of instances per bin for
 *  equal-frequency binning. If this is set to a positive
 *  number then the -B option will be ignored.
 *  (default = -1)
 * </pre>
 * 
 * <pre>
 * -F
 *  Use equal-frequency instead of equal-width discretization.
 * </pre>
 * 
 * <pre>
 * -O
 *  Optimize number of bins using leave-one-out estimate
 *  of estimated entropy (for equal-width discretization).
 *  If this is set then the -B option will be ignored.
 * </pre>
 * 
 * <pre>
 * -R &lt;col1,col2-col4,...&gt;
 *  Specifies list of columns to Discretize. First and last are valid indexes.
 *  (default: first-last)
 * </pre>
 * 
 * <pre>
 * -V
 *  Invert matching sense of column indexes.
 * </pre>
 * 
 * <pre>
 * -D
 *  Output binary attributes for discretized attributes.
 * </pre>
 * 
 * <pre>
 * -Y
 *  Use bin numbers rather than ranges for discretized attributes.
 * </pre>
 *
 * <pre> -precision &lt;integer&gt;
 *  Precision for bin boundary labels.
 *  (default = 6 decimal places).</pre>
 *
 * <pre>-spread-attribute-weight
 *  When generating binary attributes, spread weight of old
 *  attribute across new attributes. Do not give each new attribute the old weight.</pre>
 *
 * <!-- options-end -->
 * 
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class Discretize extends PotentialClassIgnorer
        implements UnsupervisedFilter, WeightedInstancesHandler, WeightedAttributesHandler {

    /** for serialization */
    static final long serialVersionUID = -1358531742174527279L;

    /** Stores which columns to Discretize */
    protected Range m_DiscretizeCols = new Range();

    /** The number of bins to divide the attribute into */
    protected int m_NumBins = 10;

    /** The desired weight of instances per bin */
    protected double m_DesiredWeightOfInstancesPerInterval = -1;

    /** Store the current cutpoints */
    protected double[][] m_CutPoints = null;

    /** Output binary attributes for discretized attributes. */
    protected boolean m_MakeBinary = false;

    /** Use bin numbers rather than ranges for discretized attributes. */
    protected boolean m_UseBinNumbers = false;

    /** Find the number of bins using cross-validated entropy. */
    protected boolean m_FindNumBins = false;

    /** Use equal-frequency binning if unsupervised discretization turned on */
    protected boolean m_UseEqualFrequency = false;

    /** The default columns to discretize */
    protected String m_DefaultCols;

    /** Precision for bin range labels */
    protected int m_BinRangePrecision = 6;

    /** Whether to spread attribute weight when creating binary attributes */
    protected boolean m_SpreadAttributeWeight = false;

    /** Constructor - initialises the filter */
    public Discretize() {

        m_DefaultCols = "first-last";
        setAttributeIndices("first-last");
    }

    /**
     * Another constructor, sets the attribute indices immediately
     * 
     * @param cols the attribute indices
     */
    public Discretize(String cols) {

        m_DefaultCols = cols;
        setAttributeIndices(cols);
    }

    /**
     * Gets an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        Vector<Option> result = new Vector<Option>();

        result.addElement(new Option("\tSpecifies the (maximum) number of bins to divide numeric"
                + " attributes into.\n" + "\t(default = 10)", "B", 1, "-B <num>"));

        result.addElement(new Option(
                "\tSpecifies the desired weight of instances per bin for\n"
                        + "\tequal-frequency binning. If this is set to a positive\n"
                        + "\tnumber then the -B option will be ignored.\n" + "\t(default = -1)",
                "M", 1, "-M <num>"));

        result.addElement(new Option("\tUse equal-frequency instead of equal-width discretization.", "F", 0, "-F"));

        result.addElement(new Option("\tOptimize number of bins using leave-one-out estimate\n"
                + "\tof estimated entropy (for equal-width discretization).\n"
                + "\tIf this is set then the -B option will be ignored.", "O", 0, "-O"));

        result.addElement(new Option("\tSpecifies list of columns to Discretize. First"
                + " and last are valid indexes.\n" + "\t(default: first-last)", "R", 1, "-R <col1,col2-col4,...>"));

        result.addElement(new Option("\tInvert matching sense of column indexes.", "V", 0, "-V"));

        result.addElement(new Option("\tOutput binary attributes for discretized attributes.", "D", 0, "-D"));

        result.addElement(
                new Option("\tUse bin numbers rather than ranges for discretized attributes.", "Y", 0, "-Y"));

        result.addElement(new Option("\tPrecision for bin boundary labels.\n\t" + "(default = 6 decimal places).",
                "precision", 1, "-precision <integer>"));

        result.addElement(new Option(
                "\tWhen generating binary attributes, spread weight of old "
                        + "attribute across new attributes. Do not give each new attribute the old weight.\n\t",
                "spread-attribute-weight", 0, "-spread-attribute-weight"));

        result.addAll(Collections.list(super.listOptions()));

        return result.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -unset-class-temporarily
     *  Unsets the class index temporarily before the filter is
     *  applied to the data.
     *  (default: no)
     * </pre>
     * 
     * <pre>
     * -B &lt;num&gt;
     *  Specifies the (maximum) number of bins to divide numeric attributes into.
     *  (default = 10)
     * </pre>
     * 
     * <pre>
     * -M &lt;num&gt;
     *  Specifies the desired weight of instances per bin for
     *  equal-frequency binning. If this is set to a positive
     *  number then the -B option will be ignored.
     *  (default = -1)
     * </pre>
     * 
     * <pre>
     * -F
     *  Use equal-frequency instead of equal-width discretization.
     * </pre>
     * 
     * <pre>
     * -O
     *  Optimize number of bins using leave-one-out estimate
     *  of estimated entropy (for equal-width discretization).
     *  If this is set then the -B option will be ignored.
     * </pre>
     * 
     * <pre>
     * -R &lt;col1,col2-col4,...&gt;
     *  Specifies list of columns to Discretize. First and last are valid indexes.
     *  (default: first-last)
     * </pre>
     * 
     * <pre>
     * -V
     *  Invert matching sense of column indexes.
     * </pre>
     * 
     * <pre>
     * -D
     *  Output binary attributes for discretized attributes.
     * </pre>
     * 
     * <pre>
     * -Y
     *  Use bin numbers rather than ranges for discretized attributes.
     * </pre>
     *
     * <pre> -precision &lt;integer&gt;
     *  Precision for bin boundary labels.
     *  (default = 6 decimal places).</pre>
     *
     * <pre>-spread-attribute-weight
     *  When generating binary attributes, spread weight of old
     *  attribute across new attributes. Do not give each new attribute the old weight.</pre>
     *
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        setMakeBinary(Utils.getFlag('D', options));
        setUseBinNumbers(Utils.getFlag('Y', options));
        setUseEqualFrequency(Utils.getFlag('F', options));
        setFindNumBins(Utils.getFlag('O', options));
        setInvertSelection(Utils.getFlag('V', options));

        String weight = Utils.getOption('M', options);
        if (weight.length() != 0) {
            setDesiredWeightOfInstancesPerInterval((new Double(weight)).doubleValue());
        } else {
            setDesiredWeightOfInstancesPerInterval(-1);
        }

        String numBins = Utils.getOption('B', options);
        if (numBins.length() != 0) {
            setBins(Integer.parseInt(numBins));
        } else {
            setBins(10);
        }

        String convertList = Utils.getOption('R', options);
        if (convertList.length() != 0) {
            setAttributeIndices(convertList);
        } else {
            setAttributeIndices(m_DefaultCols);
        }

        String precisionS = Utils.getOption("precision", options);
        if (precisionS.length() > 0) {
            setBinRangePrecision(Integer.parseInt(precisionS));
        }

        setSpreadAttributeWeight(Utils.getFlag("spread-attribute-weight", options));

        if (getInputFormat() != null) {
            setInputFormat(getInputFormat());
        }

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the filter.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        Vector<String> result = new Vector<String>();

        if (getMakeBinary()) {
            result.add("-D");
        }

        if (getUseBinNumbers()) {
            result.add("-Y");
        }

        if (getUseEqualFrequency()) {
            result.add("-F");
        }

        if (getFindNumBins()) {
            result.add("-O");
        }

        if (getInvertSelection()) {
            result.add("-V");
        }

        result.add("-B");
        result.add("" + getBins());

        result.add("-M");
        result.add("" + getDesiredWeightOfInstancesPerInterval());

        if (!getAttributeIndices().equals("")) {
            result.add("-R");
            result.add(getAttributeIndices());
        }

        result.add("-precision");
        result.add("" + getBinRangePrecision());

        if (getSpreadAttributeWeight()) {
            result.add("-spread-attribute-weight");
        }

        Collections.addAll(result, super.getOptions());

        return result.toArray(new String[result.size()]);
    }

    /**
     * Returns the Capabilities of this filter.
     * 
     * @return the capabilities of this object
     * @see Capabilities
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enableAllAttributes();
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enableAllClasses();
        result.enable(Capability.MISSING_CLASS_VALUES);
        if (!getMakeBinary()) {
            result.enable(Capability.NO_CLASS);
        }

        return result;
    }

    /**
     * Sets the format of the input instances.
     * 
     * @param instanceInfo an Instances object containing the input instance
     *          structure (any instances contained in the object are ignored -
     *          only the structure is required).
     * @return true if the outputFormat may be collected immediately
     * @throws Exception if the input format can't be set successfully
     */
    @Override
    public boolean setInputFormat(Instances instanceInfo) throws Exception {

        if (m_MakeBinary && m_IgnoreClass) {
            throw new IllegalArgumentException("Can't ignore class when " + "changing the number of attributes!");
        }

        super.setInputFormat(instanceInfo);

        m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);
        m_CutPoints = null;

        if (getFindNumBins() && getUseEqualFrequency()) {
            throw new IllegalArgumentException(
                    "Bin number optimization in conjunction " + "with equal-frequency binning not implemented.");
        }

        // If we implement loading cutfiles, then load
        // them here and set the output format
        return false;
    }

    /**
     * Input an instance for filtering. Ordinarily the instance is processed and
     * made available for output immediately. Some filters require all instances
     * be read before producing output.
     * 
     * @param instance the input instance
     * @return true if the filtered instance may now be collected with output().
     * @throws IllegalStateException if no input format has been defined.
     */
    @Override
    public boolean input(Instance instance) {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }
        if (m_NewBatch) {
            resetQueue();
            m_NewBatch = false;
        }

        if (m_CutPoints != null) {
            convertInstance(instance);
            return true;
        }

        bufferInput(instance);
        return false;
    }

    /**
     * Signifies that this batch of input to the filter is finished. If the filter
     * requires all instances prior to filtering, output() may now be called to
     * retrieve the filtered instances.
     * 
     * @return true if there are instances pending output
     * @throws IllegalStateException if no input structure has been defined
     */
    @Override
    public boolean batchFinished() {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }
        if (m_CutPoints == null) {
            calculateCutPoints();

            setOutputFormat();

            // If we implement saving cutfiles, save the cuts here

            // Convert pending input instances
            for (int i = 0; i < getInputFormat().numInstances(); i++) {
                convertInstance(getInputFormat().instance(i));
            }
        }
        flushInput();

        m_NewBatch = true;
        return (numPendingOutput() != 0);
    }

    /**
     * Returns a string describing this filter
     * 
     * @return a description of the filter suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {

        return "An instance filter that discretizes a range of numeric"
                + " attributes in the dataset into nominal attributes."
                + " Discretization is by simple binning. Skips the class" + " attribute if set.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String findNumBinsTipText() {

        return "Optimize number of equal-width bins using leave-one-out. Doesn't "
                + "work for equal-frequency binning";
    }

    /**
     * Get the value of FindNumBins.
     * 
     * @return Value of FindNumBins.
     */
    public boolean getFindNumBins() {

        return m_FindNumBins;
    }

    /**
     * Set the value of FindNumBins.
     * 
     * @param newFindNumBins Value to assign to FindNumBins.
     */
    public void setFindNumBins(boolean newFindNumBins) {

        m_FindNumBins = newFindNumBins;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String makeBinaryTipText() {

        return "Make resulting attributes binary.";
    }

    /**
     * Gets whether binary attributes should be made for discretized ones.
     * 
     * @return true if attributes will be binarized
     */
    public boolean getMakeBinary() {

        return m_MakeBinary;
    }

    /**
     * Sets whether binary attributes should be made for discretized ones.
     * 
     * @param makeBinary if binary attributes are to be made
     */
    public void setMakeBinary(boolean makeBinary) {

        m_MakeBinary = makeBinary;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useBinNumbersTipText() {
        return "Use bin numbers (eg BXofY) rather than ranges for for discretized attributes";
    }

    /**
     * Gets whether bin numbers rather than ranges should be used for discretized
     * attributes.
     * 
     * @return true if bin numbers should be used
     */
    public boolean getUseBinNumbers() {

        return m_UseBinNumbers;
    }

    /**
     * Sets whether bin numbers rather than ranges should be used for discretized
     * attributes.
     * 
     * @param useBinNumbers if bin numbers should be used
     */
    public void setUseBinNumbers(boolean useBinNumbers) {

        m_UseBinNumbers = useBinNumbers;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String desiredWeightOfInstancesPerIntervalTipText() {

        return "Sets the desired weight of instances per interval for " + "equal-frequency binning.";
    }

    /**
     * Get the DesiredWeightOfInstancesPerInterval value.
     * 
     * @return the DesiredWeightOfInstancesPerInterval value.
     */
    public double getDesiredWeightOfInstancesPerInterval() {

        return m_DesiredWeightOfInstancesPerInterval;
    }

    /**
     * Set the DesiredWeightOfInstancesPerInterval value.
     * 
     * @param newDesiredNumber The new DesiredNumber value.
     */
    public void setDesiredWeightOfInstancesPerInterval(double newDesiredNumber) {

        m_DesiredWeightOfInstancesPerInterval = newDesiredNumber;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useEqualFrequencyTipText() {

        return "If set to true, equal-frequency binning will be used instead of" + " equal-width binning.";
    }

    /**
     * Get the value of UseEqualFrequency.
     * 
     * @return Value of UseEqualFrequency.
     */
    public boolean getUseEqualFrequency() {

        return m_UseEqualFrequency;
    }

    /**
     * Set the value of UseEqualFrequency.
     * 
     * @param newUseEqualFrequency Value to assign to UseEqualFrequency.
     */
    public void setUseEqualFrequency(boolean newUseEqualFrequency) {

        m_UseEqualFrequency = newUseEqualFrequency;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String binsTipText() {

        return "Number of bins.";
    }

    /**
     * Gets the number of bins numeric attributes will be divided into
     * 
     * @return the number of bins.
     */
    public int getBins() {

        return m_NumBins;
    }

    /**
     * Sets the number of bins to divide each selected numeric attribute into
     * 
     * @param numBins the number of bins
     */
    public void setBins(int numBins) {

        m_NumBins = numBins;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String invertSelectionTipText() {

        return "Set attribute selection mode. If false, only selected"
                + " (numeric) attributes in the range will be discretized; if"
                + " true, only non-selected attributes will be discretized.";
    }

    /**
     * Gets whether the supplied columns are to be removed or kept
     * 
     * @return true if the supplied columns will be kept
     */
    public boolean getInvertSelection() {

        return m_DiscretizeCols.getInvert();
    }

    /**
     * Sets whether selected columns should be removed or kept. If true the
     * selected columns are kept and unselected columns are deleted. If false
     * selected columns are deleted and unselected columns are kept.
     * 
     * @param invert the new invert setting
     */
    public void setInvertSelection(boolean invert) {

        m_DiscretizeCols.setInvert(invert);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String attributeIndicesTipText() {
        return "Specify range of attributes to act on."
                + " This is a comma separated list of attribute indices, with"
                + " \"first\" and \"last\" valid values. Specify an inclusive"
                + " range with \"-\". E.g: \"first-3,5,6-10,last\".";
    }

    /**
     * Gets the current range selection
     * 
     * @return a string containing a comma separated list of ranges
     */
    public String getAttributeIndices() {

        return m_DiscretizeCols.getRanges();
    }

    /**
     * Sets which attributes are to be Discretized (only numeric attributes among
     * the selection will be Discretized).
     * 
     * @param rangeList a string representing the list of attributes. Since the
     *          string will typically come from a user, attributes are indexed
     *          from 1. <br>
     *          eg: first-3,5,6-last
     * @throws IllegalArgumentException if an invalid range list is supplied
     */
    public void setAttributeIndices(String rangeList) {

        m_DiscretizeCols.setRanges(rangeList);
    }

    /**
     * Sets which attributes are to be Discretized (only numeric attributes among
     * the selection will be Discretized).
     * 
     * @param attributes an array containing indexes of attributes to Discretize.
     *          Since the array will typically come from a program, attributes are
     *          indexed from 0.
     * @throws IllegalArgumentException if an invalid set of ranges is supplied
     */
    public void setAttributeIndicesArray(int[] attributes) {

        setAttributeIndices(Range.indicesToRangeList(attributes));
    }

    /**
     * Returns the tip text for this property
     *
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String spreadAttributeWeightTipText() {
        return "When generating binary attributes, spread weight of old attribute across new attributes. "
                + "Do not give each new attribute the old weight.";
    }

    /**
     * If true, when generating binary attributes, spread weight of old
     * attribute across new attributes. Do not give each new attribute the old weight.
     *
     * @param p whether weight is spread
     */
    public void setSpreadAttributeWeight(boolean p) {
        m_SpreadAttributeWeight = p;
    }

    /**
     * If true, when generating binary attributes, spread weight of old
     * attribute across new attributes. Do not give each new attribute the old weight.
     *
     * @return whether weight is spread
     */
    public boolean getSpreadAttributeWeight() {
        return m_SpreadAttributeWeight;
    }

    /**
     * Returns the tip text for this property
     *
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String binRangePrecisionTipText() {
        return "The number of decimal places for cut points to use when generating bin labels";
    }

    /**
     * Set the precision for bin boundaries. Only affects the boundary values used
     * in the labels for the converted attributes; internal cutpoints are at full
     * double precision.
     *
     * @param p the precision for bin boundaries
     */
    public void setBinRangePrecision(int p) {
        m_BinRangePrecision = p;
    }

    /**
     * Get the precision for bin boundaries. Only affects the boundary values used
     * in the labels for the converted attributes; internal cutpoints are at full
     * double precision.
     *
     * @return the precision for bin boundaries
     */
    public int getBinRangePrecision() {
        return m_BinRangePrecision;
    }

    /**
     * Gets the cut points for an attribute
     * 
     * @param attributeIndex the index (from 0) of the attribute to get the cut
     *          points of
     * @return an array containing the cutpoints (or null if the attribute
     *         requested has been discretized into only one interval.)
     */
    public double[] getCutPoints(int attributeIndex) {

        if (m_CutPoints == null) {
            return null;
        }
        return m_CutPoints[attributeIndex];
    }

    /**
     * Gets the bin ranges string for an attribute
     * 
     * @param attributeIndex the index (from 0) of the attribute to get the bin
     *          ranges string of
     * @return the bin ranges string (or null if the attribute requested has been
     *         discretized into only one interval.)
     */
    public String getBinRangesString(int attributeIndex) {

        if (m_CutPoints == null) {
            return null;
        }

        double[] cutPoints = m_CutPoints[attributeIndex];

        if (cutPoints == null) {
            return "All";
        }

        StringBuilder sb = new StringBuilder();
        boolean first = true;

        for (int j = 0, n = cutPoints.length; j <= n; ++j) {
            if (first) {
                first = false;
            } else {
                sb.append(',');
            }

            sb.append(binRangeString(cutPoints, j, getBinRangePrecision()));
        }

        return sb.toString();
    }

    /**
     * Get a bin range string for a specified bin of some attribute's cut points.
     * 
     * @param cutPoints The attribute's cut points; never null.
     * @param j The bin number (zero based); never out of range.
     * @param precision the precision for the range values
     *
     * @return The bin range string.
     */
    private static String binRangeString(double[] cutPoints, int j, int precision) {
        assert cutPoints != null;

        int n = cutPoints.length;
        assert 0 <= j && j <= n;

        return j == 0 ? "" + "(" + "-inf" + "-" + Utils.doubleToString(cutPoints[0], precision) + "]"
                : j == n ? "" + "(" + Utils.doubleToString(cutPoints[n - 1], precision) + "-" + "inf" + ")"
                        : "" + "(" + Utils.doubleToString(cutPoints[j - 1], precision) + "-"
                                + Utils.doubleToString(cutPoints[j], precision) + "]";
    }

    /** Generate the cutpoints for each attribute */
    protected void calculateCutPoints() {

        m_CutPoints = new double[getInputFormat().numAttributes()][];
        for (int i = getInputFormat().numAttributes() - 1; i >= 0; i--) {
            if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())
                    && (getInputFormat().classIndex() != i)) {
                if (m_FindNumBins) {
                    findNumBins(i);
                } else if (!m_UseEqualFrequency) {
                    calculateCutPointsByEqualWidthBinning(i);
                } else {
                    calculateCutPointsByEqualFrequencyBinning(i);
                }
            }
        }
    }

    /**
     * Set cutpoints for a single attribute.
     * 
     * @param index the index of the attribute to set cutpoints for
     */
    protected void calculateCutPointsByEqualWidthBinning(int index) {

        // Scan for max and min values
        double max = 0, min = 1, currentVal;
        Instance currentInstance;
        for (int i = 0; i < getInputFormat().numInstances(); i++) {
            currentInstance = getInputFormat().instance(i);
            if (!currentInstance.isMissing(index)) {
                currentVal = currentInstance.value(index);
                if (max < min) {
                    max = min = currentVal;
                }
                if (currentVal > max) {
                    max = currentVal;
                }
                if (currentVal < min) {
                    min = currentVal;
                }
            }
        }
        double binWidth = (max - min) / m_NumBins;
        double[] cutPoints = null;
        if ((m_NumBins > 1) && (binWidth > 0)) {
            cutPoints = new double[m_NumBins - 1];
            for (int i = 1; i < m_NumBins; i++) {
                cutPoints[i - 1] = min + binWidth * i;
            }
        }
        m_CutPoints[index] = cutPoints;
    }

    /**
     * Set cutpoints for a single attribute.
     * 
     * @param index the index of the attribute to set cutpoints for
     */
    protected void calculateCutPointsByEqualFrequencyBinning(int index) {

        // Copy data so that it can be sorted
        Instances data = new Instances(getInputFormat());

        // Sort input data
        data.sort(index);

        // Compute weight of instances without missing values
        double sumOfWeights = 0;
        for (int i = 0; i < data.numInstances(); i++) {
            if (data.instance(i).isMissing(index)) {
                break;
            } else {
                sumOfWeights += data.instance(i).weight();
            }
        }
        double freq;
        double[] cutPoints = new double[m_NumBins - 1];
        if (getDesiredWeightOfInstancesPerInterval() > 0) {
            freq = getDesiredWeightOfInstancesPerInterval();
            cutPoints = new double[(int) (sumOfWeights / freq)];
        } else {
            freq = sumOfWeights / m_NumBins;
            cutPoints = new double[m_NumBins - 1];
        }

        // Compute break points
        double counter = 0, last = 0;
        int cpindex = 0, lastIndex = -1;
        for (int i = 0; i < data.numInstances() - 1; i++) {

            // Stop if value missing
            if (data.instance(i).isMissing(index)) {
                break;
            }
            counter += data.instance(i).weight();
            sumOfWeights -= data.instance(i).weight();

            // Do we have a potential breakpoint?
            if (data.instance(i).value(index) < data.instance(i + 1).value(index)) {

                // Have we passed the ideal size?
                if (counter >= freq) {

                    // Is this break point worse than the last one?
                    if (((freq - last) < (counter - freq)) && (lastIndex != -1)) {
                        cutPoints[cpindex] = (data.instance(lastIndex).value(index)
                                + data.instance(lastIndex + 1).value(index)) / 2;
                        counter -= last;
                        last = counter;
                        lastIndex = i;
                    } else {
                        cutPoints[cpindex] = (data.instance(i).value(index) + data.instance(i + 1).value(index))
                                / 2;
                        counter = 0;
                        last = 0;
                        lastIndex = -1;
                    }
                    cpindex++;
                    freq = (sumOfWeights + counter) / ((cutPoints.length + 1) - cpindex);
                } else {
                    lastIndex = i;
                    last = counter;
                }
            }
        }

        // Check whether there was another possibility for a cut point
        if ((cpindex < cutPoints.length) && (lastIndex != -1)) {
            cutPoints[cpindex] = (data.instance(lastIndex).value(index) + data.instance(lastIndex + 1).value(index))
                    / 2;
            cpindex++;
        }

        // Did we find any cutpoints?
        if (cpindex == 0) {
            m_CutPoints[index] = null;
        } else {
            double[] cp = new double[cpindex];
            for (int i = 0; i < cpindex; i++) {
                cp[i] = cutPoints[i];
            }
            m_CutPoints[index] = cp;
        }
    }

    /**
     * Optimizes the number of bins using leave-one-out cross-validation.
     * 
     * @param index the attribute index
     */
    protected void findNumBins(int index) {

        double min = Double.MAX_VALUE, max = -Double.MAX_VALUE, binWidth = 0, entropy,
                bestEntropy = Double.MAX_VALUE, currentVal;
        double[] distribution;
        int bestNumBins = 1;
        Instance currentInstance;

        // Find minimum and maximum
        for (int i = 0; i < getInputFormat().numInstances(); i++) {
            currentInstance = getInputFormat().instance(i);
            if (!currentInstance.isMissing(index)) {
                currentVal = currentInstance.value(index);
                if (currentVal > max) {
                    max = currentVal;
                }
                if (currentVal < min) {
                    min = currentVal;
                }
            }
        }

        // Find best number of bins
        for (int i = 0; i < m_NumBins; i++) {
            distribution = new double[i + 1];
            binWidth = (max - min) / (i + 1);

            // Compute distribution
            for (int j = 0; j < getInputFormat().numInstances(); j++) {
                currentInstance = getInputFormat().instance(j);
                if (!currentInstance.isMissing(index)) {
                    for (int k = 0; k < i + 1; k++) {
                        if (currentInstance.value(index) <= (min + (((double) k + 1) * binWidth))) {
                            distribution[k] += currentInstance.weight();
                            break;
                        }
                    }
                }
            }

            // Compute cross-validated entropy
            entropy = 0;
            for (int k = 0; k < i + 1; k++) {
                if (distribution[k] < 2) {
                    entropy = Double.MAX_VALUE;
                    break;
                }
                entropy -= distribution[k] * Math.log((distribution[k] - 1) / binWidth);
            }

            // Best entropy so far?
            if (entropy < bestEntropy) {
                bestEntropy = entropy;
                bestNumBins = i + 1;
            }
        }

        // Compute cut points
        double[] cutPoints = null;
        if ((bestNumBins > 1) && (binWidth > 0)) {
            cutPoints = new double[bestNumBins - 1];
            for (int i = 1; i < bestNumBins; i++) {
                cutPoints[i - 1] = min + binWidth * i;
            }
        }
        m_CutPoints[index] = cutPoints;
    }

    /**
     * Set the output format. Takes the currently defined cutpoints and
     * m_InputFormat and calls setOutputFormat(Instances) appropriately.
     */
    protected void setOutputFormat() {

        if (m_CutPoints == null) {
            setOutputFormat(null);
            return;
        }
        ArrayList<Attribute> attributes = new ArrayList<Attribute>(getInputFormat().numAttributes());
        int classIndex = getInputFormat().classIndex();
        for (int i = 0, m = getInputFormat().numAttributes(); i < m; ++i) {
            if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())
                    && (getInputFormat().classIndex() != i)) {

                Set<String> cutPointsCheck = new HashSet<String>();
                double[] cutPoints = m_CutPoints[i];
                if (!m_MakeBinary) {
                    ArrayList<String> attribValues;
                    if (cutPoints == null) {
                        attribValues = new ArrayList<String>(1);
                        attribValues.add("'All'");
                    } else {
                        attribValues = new ArrayList<String>(cutPoints.length + 1);
                        if (m_UseBinNumbers) {
                            for (int j = 0, n = cutPoints.length; j <= n; ++j) {
                                attribValues.add("'B" + (j + 1) + "of" + (n + 1) + "'");
                            }
                        } else {
                            for (int j = 0, n = cutPoints.length; j <= n; ++j) {
                                String newBinRangeString = binRangeString(cutPoints, j, getBinRangePrecision());
                                if (!cutPointsCheck.add(newBinRangeString)) {
                                    throw new IllegalArgumentException(
                                            "A duplicate bin range was detected. Try increasing the bin range precision.");
                                }
                                attribValues.add("'" + newBinRangeString + "'");
                            }
                        }
                    }
                    Attribute newAtt = new Attribute(getInputFormat().attribute(i).name(), attribValues);
                    newAtt.setWeight(getInputFormat().attribute(i).weight());
                    attributes.add(newAtt);
                } else {
                    if (cutPoints == null) {
                        ArrayList<String> attribValues = new ArrayList<String>(1);
                        attribValues.add("'All'");
                        Attribute newAtt = new Attribute(getInputFormat().attribute(i).name(), attribValues);
                        newAtt.setWeight(getInputFormat().attribute(i).weight());
                        attributes.add(newAtt);
                    } else {
                        if (i < getInputFormat().classIndex()) {
                            classIndex += cutPoints.length - 1;
                        }
                        for (int j = 0, n = cutPoints.length; j < n; ++j) {
                            ArrayList<String> attribValues = new ArrayList<String>(2);
                            if (m_UseBinNumbers) {
                                attribValues.add("'B1of2'");
                                attribValues.add("'B2of2'");
                            } else {
                                double[] binaryCutPoint = { cutPoints[j] };
                                String newBinRangeString1 = binRangeString(binaryCutPoint, 0, m_BinRangePrecision);
                                String newBinRangeString2 = binRangeString(binaryCutPoint, 1, m_BinRangePrecision);
                                if (newBinRangeString1.equals(newBinRangeString2)) {
                                    throw new IllegalArgumentException(
                                            "A duplicate bin range was detected. Try increasing the bin range precision.");
                                }
                                attribValues.add("'" + newBinRangeString1 + "'");
                                attribValues.add("'" + newBinRangeString2 + "'");
                            }
                            Attribute newAtt = new Attribute(getInputFormat().attribute(i).name() + "_" + (j + 1),
                                    attribValues);
                            if (getSpreadAttributeWeight()) {
                                newAtt.setWeight(getInputFormat().attribute(i).weight() / cutPoints.length);
                            } else {
                                newAtt.setWeight(getInputFormat().attribute(i).weight());
                            }
                            attributes.add(newAtt);
                        }
                    }
                }
            } else {
                attributes.add((Attribute) getInputFormat().attribute(i).copy());
            }
        }
        Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0);
        outputFormat.setClassIndex(classIndex);
        setOutputFormat(outputFormat);
    }

    /**
     * Convert a single instance over. The converted instance is added to the end
     * of the output queue.
     * 
     * @param instance the instance to convert
     */
    protected void convertInstance(Instance instance) {

        int index = 0;
        double[] vals = new double[outputFormatPeek().numAttributes()];
        // Copy and convert the values
        for (int i = 0; i < getInputFormat().numAttributes(); i++) {
            if (m_DiscretizeCols.isInRange(i) && getInputFormat().attribute(i).isNumeric()
                    && (getInputFormat().classIndex() != i)) {
                int j;
                double currentVal = instance.value(i);
                if (m_CutPoints[i] == null) {
                    if (instance.isMissing(i)) {
                        vals[index] = Utils.missingValue();
                    } else {
                        vals[index] = 0;
                    }
                    index++;
                } else {
                    if (!m_MakeBinary) {
                        if (instance.isMissing(i)) {
                            vals[index] = Utils.missingValue();
                        } else {
                            for (j = 0; j < m_CutPoints[i].length; j++) {
                                if (currentVal <= m_CutPoints[i][j]) {
                                    break;
                                }
                            }
                            vals[index] = j;
                        }
                        index++;
                    } else {
                        for (j = 0; j < m_CutPoints[i].length; j++) {
                            if (instance.isMissing(i)) {
                                vals[index] = Utils.missingValue();
                            } else if (currentVal <= m_CutPoints[i][j]) {
                                vals[index] = 0;
                            } else {
                                vals[index] = 1;
                            }
                            index++;
                        }
                    }
                }
            } else {
                vals[index] = instance.value(i);
                index++;
            }
        }

        Instance inst = null;
        if (instance instanceof SparseInstance) {
            inst = new SparseInstance(instance.weight(), vals);
        } else {
            inst = new DenseInstance(instance.weight(), vals);
        }

        copyValues(inst, false, instance.dataset(), outputFormatPeek());

        push(inst); // No need to copy instance
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv should contain arguments to the filter: use -h for help
     */
    public static void main(String[] argv) {
        runFilter(new Discretize(), argv);
    }
}