weka.filters.unsupervised.attribute.ClusterMembership.java Source code

Java tutorial

Introduction

Here is the source code for weka.filters.unsupervised.attribute.ClusterMembership.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    ClusterMembership.java
 *    Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.filters.unsupervised.attribute;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.clusterers.AbstractDensityBasedClusterer;
import weka.clusterers.DensityBasedClusterer;
import weka.core.*;
import weka.filters.Filter;
import weka.filters.UnsupervisedFilter;

/**
 * <!-- globalinfo-start --> A filter that uses a density-based clusterer to
 * generate cluster membership values; filtered instances are composed of these
 * values plus the class attribute (if set in the input data). If a (nominal)
 * class attribute is set, the clusterer is run separately for each class. The
 * class attribute (if set) and any user-specified attributes are ignored during
 * the clustering operation
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -W &lt;clusterer name&gt;
 *  Full name of clusterer to use. eg:
 *   weka.clusterers.EM
 *  Additional options after the '--'.
 *  (default: weka.clusterers.EM)
 * </pre>
 * 
 * <pre>
 * -I &lt;att1,att2-att4,...&gt;
 *  The range of attributes the clusterer should ignore.
 *  (the class attribute is automatically ignored)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * Options after the -- are passed on to the clusterer.
 * 
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @author Eibe Frank
 * @version $Revision$
 */
public class ClusterMembership extends Filter
        implements UnsupervisedFilter, OptionHandler, WeightedInstancesHandler, WeightedAttributesHandler {

    /** for serialization */
    static final long serialVersionUID = 6675702504667714026L;

    /** The clusterer */
    protected DensityBasedClusterer m_clusterer = new weka.clusterers.EM();

    /** Array for storing the clusterers */
    protected DensityBasedClusterer[] m_clusterers;

    /** Range of attributes to ignore */
    protected Range m_ignoreAttributesRange;

    /** Filter for removing attributes */
    protected Filter m_removeAttributes;

    /** The prior probability for each class */
    protected double[] m_priors;

    /**
     * Returns the Capabilities of this filter.
     * 
     * @return the capabilities of this object
     * @see Capabilities
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = m_clusterer.getCapabilities();
        result.enableAllClasses();

        result.setMinimumNumberInstances(0);

        return result;
    }

    /**
     * Returns the Capabilities of this filter, makes sure that the class is never
     * set (for the clusterer).
     * 
     * @param data the data to use for customization
     * @return the capabilities of this object, based on the data
     * @see #getCapabilities()
     */
    @Override
    public Capabilities getCapabilities(Instances data) {
        Instances newData;

        newData = new Instances(data, 0);
        newData.setClassIndex(-1);

        return super.getCapabilities(newData);
    }

    /**
     * tests the data whether the filter can actually handle it
     * 
     * @param instanceInfo the data to test
     * @throws Exception if the test fails
     */
    @Override
    protected void testInputFormat(Instances instanceInfo) throws Exception {
        getCapabilities(instanceInfo).testWithFail(removeIgnored(instanceInfo));
    }

    /**
     * Sets the format of the input instances.
     * 
     * @param instanceInfo an Instances object containing the input instance
     *          structure (any instances contained in the object are ignored -
     *          only the structure is required).
     * @return true if the outputFormat may be collected immediately
     * @throws Exception if the inputFormat can't be set successfully
     */
    @Override
    public boolean setInputFormat(Instances instanceInfo) throws Exception {

        super.setInputFormat(instanceInfo);
        m_removeAttributes = null;
        m_priors = null;

        return false;
    }

    /**
     * filters all attributes that should be ignored
     * 
     * @param data the data to filter
     * @return the filtered data
     * @throws Exception if filtering fails
     */
    protected Instances removeIgnored(Instances data) throws Exception {
        Instances result = data;

        if (m_ignoreAttributesRange != null || data.classIndex() >= 0) {
            result = new Instances(data);
            m_removeAttributes = new Remove();
            String rangeString = "";
            if (m_ignoreAttributesRange != null) {
                rangeString += m_ignoreAttributesRange.getRanges();
            }
            if (data.classIndex() >= 0) {
                if (rangeString.length() > 0) {
                    rangeString += "," + (data.classIndex() + 1);
                } else {
                    rangeString = "" + (data.classIndex() + 1);
                }
            }
            ((Remove) m_removeAttributes).setAttributeIndices(rangeString);
            ((Remove) m_removeAttributes).setInvertSelection(false);
            m_removeAttributes.setInputFormat(data);
            result = Filter.useFilter(data, m_removeAttributes);
        }

        return result;
    }

    /**
     * Signify that this batch of input to the filter is finished.
     * 
     * @return true if there are instances pending output
     * @throws IllegalStateException if no input structure has been defined
     */
    @Override
    public boolean batchFinished() throws Exception {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }

        if (outputFormatPeek() == null) {
            Instances toFilter = getInputFormat();
            Instances[] toFilterIgnoringAttributes;

            // Make subsets if class is nominal
            if ((toFilter.classIndex() >= 0) && toFilter.classAttribute().isNominal()) {
                toFilterIgnoringAttributes = new Instances[toFilter.numClasses()];
                for (int i = 0; i < toFilter.numClasses(); i++) {
                    toFilterIgnoringAttributes[i] = new Instances(toFilter, toFilter.numInstances());
                }
                for (int i = 0; i < toFilter.numInstances(); i++) {
                    toFilterIgnoringAttributes[(int) toFilter.instance(i).classValue()].add(toFilter.instance(i));
                }
                m_priors = new double[toFilter.numClasses()];
                for (int i = 0; i < toFilter.numClasses(); i++) {
                    toFilterIgnoringAttributes[i].compactify();
                    m_priors[i] = toFilterIgnoringAttributes[i].sumOfWeights();
                }
                Utils.normalize(m_priors);
            } else {
                toFilterIgnoringAttributes = new Instances[1];
                toFilterIgnoringAttributes[0] = toFilter;
                m_priors = new double[1];
                m_priors[0] = 1;
            }

            // filter out attributes if necessary
            for (int i = 0; i < toFilterIgnoringAttributes.length; i++) {
                toFilterIgnoringAttributes[i] = removeIgnored(toFilterIgnoringAttributes[i]);
            }

            // build the clusterers
            if ((toFilter.classIndex() <= 0) || !toFilter.classAttribute().isNominal()) {
                m_clusterers = AbstractDensityBasedClusterer.makeCopies(m_clusterer, 1);
                m_clusterers[0].buildClusterer(toFilterIgnoringAttributes[0]);
            } else {
                m_clusterers = AbstractDensityBasedClusterer.makeCopies(m_clusterer, toFilter.numClasses());
                for (int i = 0; i < m_clusterers.length; i++) {
                    if (toFilterIgnoringAttributes[i].numInstances() == 0) {
                        m_clusterers[i] = null;
                    } else {
                        m_clusterers[i].buildClusterer(toFilterIgnoringAttributes[i]);
                    }
                }
            }

            // create output dataset
            ArrayList<Attribute> attInfo = new ArrayList<Attribute>();
            for (int j = 0; j < m_clusterers.length; j++) {
                if (m_clusterers[j] != null) {
                    for (int i = 0; i < m_clusterers[j].numberOfClusters(); i++) {
                        attInfo.add(new Attribute("pCluster_" + j + "_" + i));
                    }
                }
            }
            if (toFilter.classIndex() >= 0) {
                attInfo.add((Attribute) toFilter.classAttribute().copy());
            }
            attInfo.trimToSize();
            Instances filtered = new Instances(toFilter.relationName() + "_clusterMembership", attInfo, 0);
            if (toFilter.classIndex() >= 0) {
                filtered.setClassIndex(filtered.numAttributes() - 1);
            }
            setOutputFormat(filtered);

            // build new dataset
            for (int i = 0; i < toFilter.numInstances(); i++) {
                convertInstance(toFilter.instance(i));
            }
        }
        flushInput();

        m_NewBatch = true;
        return (numPendingOutput() != 0);
    }

    /**
     * Input an instance for filtering. Ordinarily the instance is processed and
     * made available for output immediately. Some filters require all instances
     * be read before producing output.
     * 
     * @param instance the input instance
     * @return true if the filtered instance may now be collected with output().
     * @throws IllegalStateException if no input format has been defined.
     */
    @Override
    public boolean input(Instance instance) throws Exception {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }
        if (m_NewBatch) {
            resetQueue();
            m_NewBatch = false;
        }

        if (outputFormatPeek() != null) {
            convertInstance(instance);
            return true;
        }

        bufferInput(instance);
        return false;
    }

    /**
     * Converts logs back to density values.
     * 
     * @param j the index of the clusterer
     * @param in the instance to convert the logs back
     * @return the densities
     * @throws Exception if something goes wrong
     */
    protected double[] logs2densities(int j, Instance in) throws Exception {

        double[] logs = m_clusterers[j].logJointDensitiesForInstance(in);

        for (int i = 0; i < logs.length; i++) {
            logs[i] += Math.log(m_priors[j]);
        }
        return logs;
    }

    /**
     * Convert a single instance over. The converted instance is added to the end
     * of the output queue.
     * 
     * @param instance the instance to convert
     * @throws Exception if something goes wrong
     */
    protected void convertInstance(Instance instance) throws Exception {

        // set up values
        double[] instanceVals = new double[outputFormatPeek().numAttributes()];
        double[] tempvals;
        if (instance.classIndex() >= 0) {
            tempvals = new double[outputFormatPeek().numAttributes() - 1];
        } else {
            tempvals = new double[outputFormatPeek().numAttributes()];
        }
        int pos = 0;
        for (int j = 0; j < m_clusterers.length; j++) {
            if (m_clusterers[j] != null) {
                double[] probs;
                if (m_removeAttributes != null) {
                    m_removeAttributes.input(instance);
                    probs = logs2densities(j, m_removeAttributes.output());
                } else {
                    probs = logs2densities(j, instance);
                }
                System.arraycopy(probs, 0, tempvals, pos, probs.length);
                pos += probs.length;
            }
        }
        tempvals = Utils.logs2probs(tempvals);
        System.arraycopy(tempvals, 0, instanceVals, 0, tempvals.length);
        if (instance.classIndex() >= 0) {
            instanceVals[instanceVals.length - 1] = instance.classValue();
        }

        push(new DenseInstance(instance.weight(), instanceVals));
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        Vector<Option> newVector = new Vector<Option>(2);

        newVector.addElement(new Option(
                "\tFull name of clusterer to use. eg:\n" + "\t\tweka.clusterers.EM\n"
                        + "\tAdditional options after the '--'.\n" + "\t(default: weka.clusterers.EM)",
                "W", 1, "-W <clusterer name>"));

        newVector.addElement(new Option("\tThe range of attributes the clusterer should ignore."
                + "\n\t(the class attribute is automatically ignored)", "I", 1, "-I <att1,att2-att4,...>"));

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -W &lt;clusterer name&gt;
     *  Full name of clusterer to use. eg:
     *   weka.clusterers.EM
     *  Additional options after the '--'.
     *  (default: weka.clusterers.EM)
     * </pre>
     * 
     * <pre>
     * -I &lt;att1,att2-att4,...&gt;
     *  The range of attributes the clusterer should ignore.
     *  (the class attribute is automatically ignored)
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * Options after the -- are passed on to the clusterer.
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        String clustererString = Utils.getOption('W', options);
        if (clustererString.length() == 0) {
            clustererString = weka.clusterers.EM.class.getName();
        }
        setDensityBasedClusterer((DensityBasedClusterer) Utils.forName(DensityBasedClusterer.class, clustererString,
                Utils.partitionOptions(options)));

        setIgnoredAttributeIndices(Utils.getOption('I', options));
        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the filter.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (!getIgnoredAttributeIndices().equals("")) {
            options.add("-I");
            options.add(getIgnoredAttributeIndices());
        }

        if (m_clusterer != null) {
            options.add("-W");
            options.add(getDensityBasedClusterer().getClass().getName());
        }

        if ((m_clusterer != null) && (m_clusterer instanceof OptionHandler)) {
            String[] clustererOptions = ((OptionHandler) m_clusterer).getOptions();
            if (clustererOptions.length > 0) {
                options.add("--");
                Collections.addAll(options, clustererOptions);
            }
        }
        return options.toArray(new String[0]);
    }

    /**
     * Returns a string describing this filter
     * 
     * @return a description of the filter suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {

        return "A filter that uses a density-based clusterer to generate cluster "
                + "membership values; filtered instances are composed of these values "
                + "plus the class attribute (if set in the input data). If a (nominal) "
                + "class attribute is set, the clusterer is run separately for each "
                + "class. The class attribute (if set) and any user-specified "
                + "attributes are ignored during the clustering operation";
    }

    /**
     * Returns a description of this option suitable for display as a tip text in
     * the gui.
     * 
     * @return description of this option
     */
    public String densityBasedClustererTipText() {
        return "The clusterer that will generate membership values for the instances.";
    }

    /**
     * Set the clusterer for use in filtering
     * 
     * @param newClusterer the clusterer to use
     */
    public void setDensityBasedClusterer(DensityBasedClusterer newClusterer) {
        m_clusterer = newClusterer;
    }

    /**
     * Get the clusterer used by this filter
     * 
     * @return the clusterer used
     */
    public DensityBasedClusterer getDensityBasedClusterer() {
        return m_clusterer;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String ignoredAttributeIndicesTipText() {

        return "The range of attributes to be ignored by the clusterer. eg: first-3,5,9-last";
    }

    /**
     * Gets ranges of attributes to be ignored.
     * 
     * @return a string containing a comma-separated list of ranges
     */
    public String getIgnoredAttributeIndices() {

        if (m_ignoreAttributesRange == null) {
            return "";
        } else {
            return m_ignoreAttributesRange.getRanges();
        }
    }

    /**
     * Sets the ranges of attributes to be ignored. If provided string is null, no
     * attributes will be ignored.
     * 
     * @param rangeList a string representing the list of attributes. eg:
     *          first-3,5,6-last
     * @throws IllegalArgumentException if an invalid range list is supplied
     */
    public void setIgnoredAttributeIndices(String rangeList) {

        if ((rangeList == null) || (rangeList.length() == 0)) {
            m_ignoreAttributesRange = null;
        } else {
            m_ignoreAttributesRange = new Range();
            m_ignoreAttributesRange.setRanges(rangeList);
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv should contain arguments to the filter: use -h for help
     */
    public static void main(String[] argv) {
        runFilter(new ClusterMembership(), argv);
    }
}