Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RandomizableSingleClassifierEnhancer.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.Randomizable; import weka.core.Utils; /** * Abstract utility class for handling settings common to randomizable * meta classifiers that build an ensemble from a single base learner. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public abstract class RandomizableSingleClassifierEnhancer extends SingleClassifierEnhancer implements Randomizable { /** for serialization */ private static final long serialVersionUID = 558286687096157160L; /** The random number seed. */ protected int m_Seed = 1; /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option("\tRandom number seed.\n" + "\t(default 1)", "S", 1, "-S <num>")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -W classname <br> * Specify the full class name of the base learner.<p> * * -I num <br> * Set the number of iterations (default 10). <p> * * -S num <br> * Set the random number seed (default 1). <p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String seed = Utils.getOption('S', options); if (seed.length() != 0) { setSeed(Integer.parseInt(seed)); } else { setSeed(1); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector<String> options = new Vector<String>(); options.add("-S"); options.add("" + getSeed()); Collections.addAll(options, super.getOptions()); return options.toArray(new String[0]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The random number seed to be used."; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(int seed) { m_Seed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_Seed; } }