weka.classifiers.meta.CostSensitiveClassifier.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.meta.CostSensitiveClassifier.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    CostSensitiveClassifier.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.StringReader;
import java.io.StringWriter;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.core.*;
import weka.core.Capabilities.Capability;

/**
 <!-- globalinfo-start -->
 * A metaclassifier that makes its base classifier cost-sensitive. Two methods can be used to introduce cost-sensitivity: reweighting training instances according to the total cost assigned to each class; or predicting the class with minimum expected misclassification cost (rather than the most likely class). Performance can often be improved by using a Bagged classifier to improve the probability estimates of the base classifier.
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -M
 *  Minimize expected misclassification cost. Default is to
 *  reweight training instances according to costs per class</pre>
 * 
 * <pre> -C &lt;cost file name&gt;
 *  File name of a cost matrix to use. If this is not supplied,
 *  a cost matrix will be loaded on demand. The name of the
 *  on-demand file is the relation name of the training data
 *  plus ".cost", and the path to the on-demand file is
 *  specified with the -N option.</pre>
 * 
 * <pre> -N &lt;directory&gt;
 *  Name of a directory to search for cost files when loading
 *  costs on demand (default current directory).</pre>
 * 
 * <pre> -cost-matrix &lt;matrix&gt;
 *  The cost matrix in Matlab single line format.</pre>
 * 
 * <pre> -S &lt;num&gt;
 *  Random number seed.
 *  (default 1)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.rules.ZeroR)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * Options after -- are passed to the designated classifier.<p>
 *
 * @author Len Trigg (len@reeltwo.com)
 * @version $Revision$
 */
public class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer
        implements OptionHandler, Drawable, BatchPredictor {

    /** for serialization */
    static final long serialVersionUID = -110658209263002404L;

    /** load cost matrix on demand */
    public static final int MATRIX_ON_DEMAND = 1;
    /** use explicit cost matrix */
    public static final int MATRIX_SUPPLIED = 2;
    /** Specify possible sources of the cost matrix */
    public static final Tag[] TAGS_MATRIX_SOURCE = { new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"),
            new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix") };

    /** Indicates the current cost matrix source */
    protected int m_MatrixSource = MATRIX_ON_DEMAND;

    /** 
     * The directory used when loading cost files on demand, null indicates
     * current directory 
     */
    protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));

    /** The name of the cost file, for command line options */
    protected String m_CostFile;

    /** The cost matrix */
    protected CostMatrix m_CostMatrix = new CostMatrix(1);

    /** 
     * True if the costs should be used by selecting the minimum expected
     * cost (false means weight training data by the costs)
     */
    protected boolean m_MinimizeExpectedCost;

    /**
     * String describing default classifier.
     * 
     * @return the default classifier classname 
     */
    protected String defaultClassifierString() {

        return "weka.classifiers.rules.ZeroR";
    }

    /**
     * Default constructor.
     */
    public CostSensitiveClassifier() {
        m_Classifier = new weka.classifiers.rules.ZeroR();
    }

    /**
     * Returns an enumeration describing the available options.
     *
     * @return an enumeration of all the available options.
     */
    public Enumeration<Option> listOptions() {

        Vector<Option> newVector = new Vector<Option>(4);

        newVector.addElement(new Option("\tMinimize expected misclassification cost. Default is to\n"
                + "\treweight training instances according to costs per class", "M", 0, "-M"));
        newVector.addElement(new Option("\tFile name of a cost matrix to use. If this is not supplied,\n"
                + "\ta cost matrix will be loaded on demand. The name of the\n"
                + "\ton-demand file is the relation name of the training data\n"
                + "\tplus \".cost\", and the path to the on-demand file is\n" + "\tspecified with the -N option.",
                "C", 1, "-C <cost file name>"));
        newVector.addElement(new Option("\tName of a directory to search for cost files when loading\n"
                + "\tcosts on demand (default current directory).", "N", 1, "-N <directory>"));
        newVector.addElement(new Option("\tThe cost matrix in Matlab single line format.", "cost-matrix", 1,
                "-cost-matrix <matrix>"));

        newVector.addAll(Collections.list(super.listOptions()));

        return newVector.elements();
    }

    /**
     * Parses a given list of options. <p/>
     *
     <!-- options-start -->
     * Valid options are: <p/>
     * 
     * <pre> -M
     *  Minimize expected misclassification cost. Default is to
     *  reweight training instances according to costs per class</pre>
     * 
     * <pre> -C &lt;cost file name&gt;
     *  File name of a cost matrix to use. If this is not supplied,
     *  a cost matrix will be loaded on demand. The name of the
     *  on-demand file is the relation name of the training data
     *  plus ".cost", and the path to the on-demand file is
     *  specified with the -N option.</pre>
     * 
     * <pre> -N &lt;directory&gt;
     *  Name of a directory to search for cost files when loading
     *  costs on demand (default current directory).</pre>
     * 
     * <pre> -cost-matrix &lt;matrix&gt;
     *  The cost matrix in Matlab single line format.</pre>
     * 
     * <pre> -S &lt;num&gt;
     *  Random number seed.
     *  (default 1)</pre>
     * 
     * <pre> -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console</pre>
     * 
     * <pre> -W
     *  Full name of base classifier.
     *  (default: weka.classifiers.rules.ZeroR)</pre>
     * 
     * <pre> 
     * Options specific to classifier weka.classifiers.rules.ZeroR:
     * </pre>
     * 
     * <pre> -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console</pre>
     * 
     <!-- options-end -->
     *
     * Options after -- are passed to the designated classifier.<p>
     *
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    public void setOptions(String[] options) throws Exception {

        setMinimizeExpectedCost(Utils.getFlag('M', options));

        String costFile = Utils.getOption('C', options);
        if (costFile.length() != 0) {
            try {
                setCostMatrix(new CostMatrix(new BufferedReader(new FileReader(costFile))));
            } catch (Exception ex) {
                // now flag as possible old format cost matrix. Delay cost matrix
                // loading until buildClassifer is called
                setCostMatrix(null);
            }
            setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, TAGS_MATRIX_SOURCE));
            m_CostFile = costFile;
        } else {
            setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND, TAGS_MATRIX_SOURCE));
        }

        String demandDir = Utils.getOption('N', options);
        if (demandDir.length() != 0) {
            setOnDemandDirectory(new File(demandDir));
        }

        String cost_matrix = Utils.getOption("cost-matrix", options);
        if (cost_matrix.length() != 0) {
            StringWriter writer = new StringWriter();
            CostMatrix.parseMatlab(cost_matrix).write(writer);
            setCostMatrix(new CostMatrix(new StringReader(writer.toString())));
            setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, TAGS_MATRIX_SOURCE));
        }

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the Classifier.
     *
     * @return an array of strings suitable for passing to setOptions
     */
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (m_MatrixSource == MATRIX_SUPPLIED) {
            if (m_CostFile != null) {
                options.add("-C");
                options.add("" + m_CostFile);
            } else {
                options.add("-cost-matrix");
                options.add(getCostMatrix().toMatlab());
            }
        } else {
            options.add("-N");
            options.add("" + getOnDemandDirectory());
        }

        if (getMinimizeExpectedCost()) {
            options.add("-M");
        }

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    }

    /**
     * @return a description of the classifier suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {

        return "A metaclassifier that makes its base classifier cost-sensitive. "
                + "Two methods can be used to introduce cost-sensitivity: reweighting "
                + "training instances according to the total cost assigned to each "
                + "class; or predicting the class with minimum expected "
                + "misclassification cost (rather than the most likely class). " + "Performance can often be "
                + "improved by using a Bagged classifier to improve the probability "
                + "estimates of the base classifier.";
    }

    /**
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String costMatrixSourceTipText() {

        return "Sets where to get the cost matrix. The two options are"
                + "to use the supplied explicit cost matrix (the setting of the "
                + "costMatrix property), or to load a cost matrix from a file when "
                + "required (this file will be loaded from the directory set by the "
                + "onDemandDirectory property and will be named relation_name" + CostMatrix.FILE_EXTENSION + ").";
    }

    /**
     * Gets the source location method of the cost matrix. Will be one of
     * MATRIX_ON_DEMAND or MATRIX_SUPPLIED.
     *
     * @return the cost matrix source.
     */
    public SelectedTag getCostMatrixSource() {

        return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE);
    }

    /**
     * Sets the source location of the cost matrix. Values other than
     * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.
     *
     * @param newMethod the cost matrix location method.
     */
    public void setCostMatrixSource(SelectedTag newMethod) {

        if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {
            m_MatrixSource = newMethod.getSelectedTag().getID();
        }
    }

    /**
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String onDemandDirectoryTipText() {

        return "Sets the directory where cost files are loaded from. This option "
                + "is used when the costMatrixSource is set to \"On Demand\".";
    }

    /**
     * Returns the directory that will be searched for cost files when
     * loading on demand.
     *
     * @return The cost file search directory.
     */
    public File getOnDemandDirectory() {

        return m_OnDemandDirectory;
    }

    /**
     * Sets the directory that will be searched for cost files when
     * loading on demand.
     *
     * @param newDir The cost file search directory.
     */
    public void setOnDemandDirectory(File newDir) {

        if (newDir.isDirectory()) {
            m_OnDemandDirectory = newDir;
        } else {
            m_OnDemandDirectory = new File(newDir.getParent());
        }
        m_MatrixSource = MATRIX_ON_DEMAND;
    }

    /**
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String minimizeExpectedCostTipText() {

        return "Sets whether the minimum expected cost criteria will be used. If "
                + "this is false, the training data will be reweighted according to the "
                + "costs assigned to each class. If true, the minimum expected cost " + "criteria will be used.";
    }

    /**
     * Gets the value of MinimizeExpectedCost.
     *
     * @return Value of MinimizeExpectedCost.
     */
    public boolean getMinimizeExpectedCost() {

        return m_MinimizeExpectedCost;
    }

    /**
     * Set the value of MinimizeExpectedCost.
     *
     * @param newMinimizeExpectedCost Value to assign to MinimizeExpectedCost.
     */
    public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost) {

        m_MinimizeExpectedCost = newMinimizeExpectedCost;
    }

    /**
     * Gets the classifier specification string, which contains the class name of
     * the classifier and any options to the classifier
     *
     * @return the classifier string.
     */
    protected String getClassifierSpec() {

        Classifier c = getClassifier();
        if (c instanceof OptionHandler) {
            return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler) c).getOptions());
        }
        return c.getClass().getName();
    }

    /**
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String costMatrixTipText() {
        return "Sets the cost matrix explicitly. This matrix is used if the "
                + "costMatrixSource property is set to \"Supplied\".";
    }

    /**
     * Gets the misclassification cost matrix.
     *
     * @return the cost matrix
     */
    public CostMatrix getCostMatrix() {

        return m_CostMatrix;
    }

    /**
     * Sets the misclassification cost matrix.
     *
     * @param newCostMatrix the cost matrix
     */
    public void setCostMatrix(CostMatrix newCostMatrix) {

        m_CostMatrix = newCostMatrix;
        m_MatrixSource = MATRIX_SUPPLIED;
    }

    /**
     * Returns default capabilities of the classifier.
     *
     * @return      the capabilities of this classifier
     */
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();

        // class
        result.disableAllClasses();
        result.disableAllClassDependencies();
        result.enable(Capability.NOMINAL_CLASS);

        return result;
    }

    /**
     * Builds the model of the base learner.
     *
     * @param data the training data
     * @throws Exception if the classifier could not be built successfully
     */
    public void buildClassifier(Instances data) throws Exception {

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // remove instances with missing class
        data = new Instances(data);
        data.deleteWithMissingClass();

        if (m_Classifier == null) {
            throw new Exception("No base classifier has been set!");
        }
        if (m_MatrixSource == MATRIX_ON_DEMAND) {
            String costName = data.relationName() + CostMatrix.FILE_EXTENSION;
            File costFile = new File(getOnDemandDirectory(), costName);
            if (!costFile.exists()) {
                throw new Exception("On-demand cost file doesn't exist: " + costFile);
            }
            setCostMatrix(new CostMatrix(new BufferedReader(new FileReader(costFile))));
        } else if (m_CostMatrix == null) {
            // try loading an old format cost file
            m_CostMatrix = new CostMatrix(data.numClasses());
            m_CostMatrix.readOldFormat(new BufferedReader(new FileReader(m_CostFile)));
        }

        if (!m_MinimizeExpectedCost) {
            Random random = null;
            if (!(m_Classifier instanceof WeightedInstancesHandler)) {
                random = new Random(m_Seed);
            }
            data = m_CostMatrix.applyCostMatrix(data, random);
        }
        m_Classifier.buildClassifier(data);
    }

    /**
     * Returns class probabilities. When minimum expected cost approach is chosen,
     * returns probability one for class with the minimum expected misclassification
     * cost. Otherwise it returns the probability distribution returned by
     * the base classifier.
     *
     * @param instance the instance to be classified
     * @return the computed distribution for the given instance
     * @throws Exception if instance could not be classified
     * successfully */
    public double[] distributionForInstance(Instance instance) throws Exception {

        if (!m_MinimizeExpectedCost) {
            return m_Classifier.distributionForInstance(instance);
        } else {
            return convertDistribution(m_Classifier.distributionForInstance(instance), instance);
        }
    }

    /**
     * Convert distribution using minimum expected cost approach. The incoming
     * array is modified and returned!
     *
     * @param pred the predicted distribution
     * @param instance the instance
     * @return the modified distribution
     */
    protected double[] convertDistribution(double[] pred, Instance instance) throws Exception {

        double[] costs = m_CostMatrix.expectedCosts(pred, instance);

        // This is probably not ideal
        int classIndex = Utils.minIndex(costs);
        for (int i = 0; i < pred.length; i++) {
            if (i == classIndex) {
                pred[i] = 1.0;
            } else {
                pred[i] = 0.0;
            }
        }
        return pred;
    }

    /**
     * Batch scoring method. Calls the appropriate method for the base learner if
     * it implements BatchPredictor. Otherwise it simply calls the
     * distributionForInstance() method repeatedly.
     *
     * @param insts the instances to get predictions for
     * @return an array of probability distributions, one for each instance
     * @throws Exception if a problem occurs
     */
    public double[][] distributionsForInstances(Instances insts) throws Exception {

        if (getClassifier() instanceof BatchPredictor) {
            double[][] dists = ((BatchPredictor) getClassifier()).distributionsForInstances(insts);
            if (!m_MinimizeExpectedCost) {
                return dists;
            } else {
                for (int i = 0; i < dists.length; i++) {
                    dists[i] = convertDistribution(dists[i], insts.instance(i));
                }
                return dists;
            }
        } else {
            double[][] result = new double[insts.numInstances()][insts.numClasses()];
            for (int i = 0; i < insts.numInstances(); i++) {
                result[i] = distributionForInstance(insts.instance(i));
            }
            return result;
        }
    }

    /**
     * Tool tip text for this property
     *
     * @return the tool tip for this property
     */
    public String batchSizeTipText() {
        return "Batch size to use if base learner is a BatchPredictor";
    }

    /**
     * Set the batch size to use. Gets passed through to the base learner if it
     * implements BatchPredictor. Otherwise it is just ignored.
     *
     * @param size the batch size to use
     */
    public void setBatchSize(String size) {

        if (getClassifier() instanceof BatchPredictor) {
            ((BatchPredictor) getClassifier()).setBatchSize(size);
        } else {
            super.setBatchSize(size);
        }
    }

    /**
     * Gets the preferred batch size from the base learner if it implements
     * BatchPredictor. Returns 1 as the preferred batch size otherwise.
     *
     * @return the batch size to use
     */
    public String getBatchSize() {

        if (getClassifier() instanceof BatchPredictor) {
            return ((BatchPredictor) getClassifier()).getBatchSize();
        } else {
            return super.getBatchSize();
        }
    }

    /**
     * Returns true if the base classifier implements BatchPredictor and is able
     * to generate batch predictions efficiently
     *
     * @return true if the base classifier can generate batch predictions
     *         efficiently
     */
    public boolean implementsMoreEfficientBatchPrediction() {
        if (!(getClassifier() instanceof BatchPredictor)) {
            return false;
        }

        return ((BatchPredictor) getClassifier()).implementsMoreEfficientBatchPrediction();
    }

    /**
     *  Returns the type of graph this classifier
     *  represents.
     *  
     *  @return the type of graph this classifier represents
     */
    public int graphType() {

        if (m_Classifier instanceof Drawable)
            return ((Drawable) m_Classifier).graphType();
        else
            return Drawable.NOT_DRAWABLE;
    }

    /**
     * Returns graph describing the classifier (if possible).
     *
     * @return the graph of the classifier in dotty format
     * @throws Exception if the classifier cannot be graphed
     */
    public String graph() throws Exception {

        if (m_Classifier instanceof Drawable)
            return ((Drawable) m_Classifier).graph();
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot be graphed");
    }

    /**
     * Output a representation of this classifier
     * 
     * @return a string representation of the classifier
     */
    public String toString() {

        if (m_Classifier == null) {
            return "CostSensitiveClassifier: No model built yet.";
        }

        String result = "CostSensitiveClassifier using ";
        if (m_MinimizeExpectedCost) {
            result += "minimized expected misclasification cost\n";
        } else {
            result += "reweighted training instances\n";
        }
        result += "\n" + getClassifierSpec() + "\n\nClassifier Model\n" + m_Classifier.toString()
                + "\n\nCost Matrix\n" + m_CostMatrix.toString();

        return result;
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     *
     * @param argv should contain the following arguments:
     * -t training file [-T test file] [-c class index]
     */
    public static void main(String[] argv) {
        runClassifier(new CostSensitiveClassifier(), argv);
    }
}