weka.classifiers.bayes.net.estimate.BMAEstimator.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.bayes.net.estimate.BMAEstimator.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * BayesNet.java
 * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 * 
 */

package weka.classifiers.bayes.net.estimate;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.search.local.K2;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Statistics;
import weka.core.Utils;
import weka.estimators.Estimator;

/**
 * <!-- globalinfo-start --> BMAEstimator estimates conditional probability
 * tables of a Bayes network using Bayes Model Averaging (BMA).
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -k2
 *  Whether to use K2 prior.
 * </pre>
 * 
 * <pre>
 * -A &lt;alpha&gt;
 *  Initial count (alpha)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Remco Bouckaert (rrb@xm.co.nz)
 * @version $Revision$
 */
public class BMAEstimator extends SimpleEstimator {

    /** for serialization */
    static final long serialVersionUID = -1846028304233257309L;

    /** whether to use K2 prior */
    protected boolean m_bUseK2Prior = false;

    /**
     * Returns a string describing this object
     * 
     * @return a description of the classifier suitable for displaying in the
     *         explorer/experimenter gui
     */
    @Override
    public String globalInfo() {
        return "BMAEstimator estimates conditional probability tables of a Bayes "
                + "network using Bayes Model Averaging (BMA).";
    }

    /**
     * estimateCPTs estimates the conditional probability tables for the Bayes Net
     * using the network structure.
     * 
     * @param bayesNet the bayes net to use
     * @throws Exception if an error occurs
     */
    @Override
    public void estimateCPTs(BayesNet bayesNet) throws Exception {
        initCPTs(bayesNet);

        Instances instances = bayesNet.m_Instances;
        // sanity check to see if nodes have not more than one parent
        for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
            if (bayesNet.getParentSet(iAttribute).getNrOfParents() > 1) {
                throw new Exception("Cannot handle networks with nodes with more than 1 parent (yet).");
            }
        }

        BayesNet EmptyNet = new BayesNet();
        K2 oSearchAlgorithm = new K2();
        oSearchAlgorithm.setInitAsNaiveBayes(false);
        oSearchAlgorithm.setMaxNrOfParents(0);
        EmptyNet.setSearchAlgorithm(oSearchAlgorithm);
        EmptyNet.buildClassifier(instances);

        BayesNet NBNet = new BayesNet();
        oSearchAlgorithm.setInitAsNaiveBayes(true);
        oSearchAlgorithm.setMaxNrOfParents(1);
        NBNet.setSearchAlgorithm(oSearchAlgorithm);
        NBNet.buildClassifier(instances);

        // estimate CPTs
        for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
            if (iAttribute != instances.classIndex()) {
                double w1 = 0.0, w2 = 0.0;
                int nAttValues = instances.attribute(iAttribute).numValues();
                if (m_bUseK2Prior == true) {
                    // use Cooper and Herskovitz's metric
                    for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) {
                        w1 += Statistics
                                .lnGamma(1 + ((DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0])
                                        .getCount(iAttValue))
                                - Statistics.lnGamma(1);
                    }
                    w1 += Statistics.lnGamma(nAttValues)
                            - Statistics.lnGamma(nAttValues + instances.numInstances());

                    for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute)
                            .getCardinalityOfParents(); iParent++) {
                        int nTotal = 0;
                        for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) {
                            double nCount = ((DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent])
                                    .getCount(iAttValue);
                            w2 += Statistics.lnGamma(1 + nCount) - Statistics.lnGamma(1);
                            nTotal += nCount;
                        }
                        w2 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + nTotal);
                    }
                } else {
                    // use BDe metric
                    for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) {
                        w1 += Statistics.lnGamma(1.0 / nAttValues
                                + ((DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0])
                                        .getCount(iAttValue))
                                - Statistics.lnGamma(1.0 / nAttValues);
                    }
                    w1 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + instances.numInstances());

                    int nParentValues = bayesNet.getParentSet(iAttribute).getCardinalityOfParents();
                    for (int iParent = 0; iParent < nParentValues; iParent++) {
                        int nTotal = 0;
                        for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) {
                            double nCount = ((DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent])
                                    .getCount(iAttValue);
                            w2 += Statistics.lnGamma(1.0 / (nAttValues * nParentValues) + nCount)
                                    - Statistics.lnGamma(1.0 / (nAttValues * nParentValues));
                            nTotal += nCount;
                        }
                        w2 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + nTotal);
                    }
                }

                // System.out.println(w1 + " " + w2 + " " + (w2 - w1));
                if (w1 < w2) {
                    w2 = w2 - w1;
                    w1 = 0;
                    w1 = 1 / (1 + Math.exp(w2));
                    w2 = Math.exp(w2) / (1 + Math.exp(w2));
                } else {
                    w1 = w1 - w2;
                    w2 = 0;
                    w2 = 1 / (1 + Math.exp(w1));
                    w1 = Math.exp(w1) / (1 + Math.exp(w1));
                }

                for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute)
                        .getCardinalityOfParents(); iParent++) {
                    bayesNet.m_Distributions[iAttribute][iParent] = new DiscreteEstimatorFullBayes(
                            instances.attribute(iAttribute).numValues(), w1, w2,
                            (DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0],
                            (DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent], m_fAlpha);
                }
            }
        }
        int iAttribute = instances.classIndex();
        bayesNet.m_Distributions[iAttribute][0] = EmptyNet.m_Distributions[iAttribute][0];
    } // estimateCPTs

    /**
     * Updates the classifier with the given instance.
     * 
     * @param bayesNet the bayes net to use
     * @param instance the new training instance to include in the model
     * @throws Exception if the instance could not be incorporated in the model.
     */
    @Override
    public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception {
        throw new Exception("updateClassifier does not apply to BMA estimator");
    } // updateClassifier

    /**
     * initCPTs reserves space for CPTs and set all counts to zero
     * 
     * @param bayesNet the bayes net to use
     * @throws Exception if something goes wrong
     */
    @Override
    public void initCPTs(BayesNet bayesNet) throws Exception {
        // Reserve space for CPTs
        int nMaxParentCardinality = 1;

        for (int iAttribute = 0; iAttribute < bayesNet.m_Instances.numAttributes(); iAttribute++) {
            if (bayesNet.getParentSet(iAttribute).getCardinalityOfParents() > nMaxParentCardinality) {
                nMaxParentCardinality = bayesNet.getParentSet(iAttribute).getCardinalityOfParents();
            }
        }

        // Reserve plenty of memory
        bayesNet.m_Distributions = new Estimator[bayesNet.m_Instances.numAttributes()][nMaxParentCardinality];
    } // initCPTs

    /**
     * Returns whether K2 prior is used
     * 
     * @return true if K2 prior is used
     */
    public boolean isUseK2Prior() {
        return m_bUseK2Prior;
    }

    /**
     * Sets the UseK2Prior.
     * 
     * @param bUseK2Prior The bUseK2Prior to set
     */
    public void setUseK2Prior(boolean bUseK2Prior) {
        m_bUseK2Prior = bUseK2Prior;
    }

    /**
     * Returns an enumeration describing the available options
     * 
     * @return an enumeration of all the available options
     */
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(1);

        newVector.addElement(new Option("\tWhether to use K2 prior.\n", "k2", 0, "-k2"));

        newVector.addAll(Collections.list(super.listOptions()));

        return newVector.elements();
    } // listOptions

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -k2
     *  Whether to use K2 prior.
     * </pre>
     * 
     * <pre>
     * -A &lt;alpha&gt;
     *  Initial count (alpha)
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        setUseK2Prior(Utils.getFlag("k2", options));

        super.setOptions(options);
    } // setOptions

    /**
     * Gets the current settings of the classifier.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (isUseK2Prior()) {
            options.add("-k2");
        }

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    } // getOptions

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
} // class BMAEstimator