weka.attributeSelection.GreedyStepwise.java Source code

Java tutorial

Introduction

Here is the source code for weka.attributeSelection.GreedyStepwise.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    GreedyStepwise.java
 *    Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import java.util.ArrayList;
import java.util.BitSet;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 * <!-- globalinfo-start --> GreedyStepwise :<br/>
 * <br/>
 * Performs a greedy forward or backward search through the space of attribute
 * subsets. May start with no/all attributes or from an arbitrary point in the
 * space. Stops when the addition/deletion of any remaining attributes results
 * in a decrease in evaluation. Can also produce a ranked list of attributes by
 * traversing the space from one side to the other and recording the order that
 * attributes are selected.<br/>
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -C
 *  Use conservative forward search
 * </pre>
 * 
 * <pre>
 * -B
 *  Use a backward search instead of a
 *  forward one.
 * </pre>
 * 
 * <pre>
 * -P &lt;start set&gt;
 *  Specify a starting set of attributes.
 *  Eg. 1,3,5-7.
 * </pre>
 * 
 * <pre>
 * -R
 *  Produce a ranked list of attributes.
 * </pre>
 * 
 * <pre>
 * -T &lt;threshold&gt;
 *  Specify a theshold by which attributes
 *  may be discarded from the ranking.
 *  Use in conjuction with -R
 * </pre>
 * 
 * <pre>
 * -N &lt;num to select&gt;
 *  Specify number of attributes to select
 * </pre>
 * 
 * <pre>
 * -num-slots &lt;int&gt;
 *  The number of execution slots, for example, the number of cores in the CPU. (default 1)
 * </pre>
 * 
 * <pre>
 * -D
 *  Print debugging output
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Mark Hall
 * @version $Revision$
 */
public class GreedyStepwise extends ASSearch implements RankedOutputSearch, StartSetHandler, OptionHandler {

    /** for serialization */
    static final long serialVersionUID = -6312951970168325471L;

    /** does the data have a class */
    protected boolean m_hasClass;

    /** holds the class index */
    protected int m_classIndex;

    /** number of attributes in the data */
    protected int m_numAttribs;

    /** true if the user has requested a ranked list of attributes */
    protected boolean m_rankingRequested;

    /**
     * go from one side of the search space to the other in order to generate a
     * ranking
     */
    protected boolean m_doRank;

    /** used to indicate whether or not ranking has been performed */
    protected boolean m_doneRanking;

    /**
     * A threshold by which to discard attributes---used by the AttributeSelection
     * module
     */
    protected double m_threshold;

    /**
     * The number of attributes to select. -1 indicates that all attributes are to
     * be retained. Has precedence over m_threshold
     */
    protected int m_numToSelect = -1;

    protected int m_calculatedNumToSelect;

    /** the merit of the best subset found */
    protected double m_bestMerit;

    /** a ranked list of attribute indexes */
    protected double[][] m_rankedAtts;
    protected int m_rankedSoFar;

    /** the best subset found */
    protected BitSet m_best_group;
    protected ASEvaluation m_ASEval;

    protected Instances m_Instances;

    /** holds the start set for the search as a Range */
    protected Range m_startRange;

    /** holds an array of starting attributes */
    protected int[] m_starting;

    /** Use a backwards search instead of a forwards one */
    protected boolean m_backward = false;

    /**
     * If set then attributes will continue to be added during a forward search as
     * long as the merit does not degrade
     */
    protected boolean m_conservativeSelection = false;

    /** Print debugging output */
    protected boolean m_debug = false;

    protected int m_poolSize = 1;

    /** Thread pool */
    protected transient ExecutorService m_pool = null;

    /**
     * Constructor
     */
    public GreedyStepwise() {
        m_threshold = -Double.MAX_VALUE;
        m_doneRanking = false;
        m_startRange = new Range();
        m_starting = null;
        resetOptions();
    }

    /**
     * Returns a string describing this search method
     * 
     * @return a description of the search suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "GreedyStepwise :\n\nPerforms a greedy forward or backward search " + "through "
                + "the space of attribute subsets. May start with no/all attributes or from "
                + "an arbitrary point in the space. Stops when the addition/deletion of any "
                + "remaining attributes results in a decrease in evaluation. "
                + "Can also produce a ranked list of "
                + "attributes by traversing the space from one side to the other and "
                + "recording the order that attributes are selected.\n";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String searchBackwardsTipText() {
        return "Search backwards rather than forwards.";
    }

    /**
     * Set whether to search backwards instead of forwards
     * 
     * @param back true to search backwards
     */
    public void setSearchBackwards(boolean back) {
        m_backward = back;
        if (m_backward) {
            setGenerateRanking(false);
        }
    }

    /**
     * Get whether to search backwards
     * 
     * @return true if the search will proceed backwards
     */
    public boolean getSearchBackwards() {
        return m_backward;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String thresholdTipText() {
        return "Set threshold by which attributes can be discarded. Default value "
                + "results in no attributes being discarded. Use in conjunction with " + "generateRanking";
    }

    /**
     * Set the threshold by which the AttributeSelection module can discard
     * attributes.
     * 
     * @param threshold the threshold.
     */
    @Override
    public void setThreshold(double threshold) {
        m_threshold = threshold;
    }

    /**
     * Returns the threshold so that the AttributeSelection module can discard
     * attributes from the ranking.
     */
    @Override
    public double getThreshold() {
        return m_threshold;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String numToSelectTipText() {
        return "Specify the number of attributes to retain. The default value "
                + "(-1) indicates that all attributes are to be retained. Use either "
                + "this option or a threshold to reduce the attribute set.";
    }

    /**
     * Specify the number of attributes to select from the ranked list (if
     * generating a ranking). -1 indicates that all attributes are to be retained.
     * 
     * @param n the number of attributes to retain
     */
    @Override
    public void setNumToSelect(int n) {
        m_numToSelect = n;
    }

    /**
     * Gets the number of attributes to be retained.
     * 
     * @return the number of attributes to retain
     */
    @Override
    public int getNumToSelect() {
        return m_numToSelect;
    }

    /**
     * Gets the calculated number of attributes to retain. This is the actual
     * number of attributes to retain. This is the same as getNumToSelect if the
     * user specifies a number which is not less than zero. Otherwise it should be
     * the number of attributes in the (potentially transformed) data.
     */
    @Override
    public int getCalculatedNumToSelect() {
        if (m_numToSelect >= 0) {
            m_calculatedNumToSelect = m_numToSelect;
        }
        return m_calculatedNumToSelect;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String generateRankingTipText() {
        return "Set to true if a ranked list is required.";
    }

    /**
     * Records whether the user has requested a ranked list of attributes.
     * 
     * @param doRank true if ranking is requested
     */
    @Override
    public void setGenerateRanking(boolean doRank) {
        m_rankingRequested = doRank;
    }

    /**
     * Gets whether ranking has been requested. This is used by the
     * AttributeSelection module to determine if rankedAttributes() should be
     * called.
     * 
     * @return true if ranking has been requested.
     */
    @Override
    public boolean getGenerateRanking() {
        return m_rankingRequested;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String startSetTipText() {
        return "Set the start point for the search. This is specified as a comma "
                + "seperated list off attribute indexes starting at 1. It can include " + "ranges. Eg. 1,2,5-9,17.";
    }

    /**
     * Sets a starting set of attributes for the search. It is the search method's
     * responsibility to report this start set (if any) in its toString() method.
     * 
     * @param startSet a string containing a list of attributes (and or ranges),
     *          eg. 1,2,6,10-15.
     * @throws Exception if start set can't be set.
     */
    @Override
    public void setStartSet(String startSet) throws Exception {
        m_startRange.setRanges(startSet);
    }

    /**
     * Returns a list of attributes (and or attribute ranges) as a String
     * 
     * @return a list of attributes (and or attribute ranges)
     */
    @Override
    public String getStartSet() {
        return m_startRange.getRanges();
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String conservativeForwardSelectionTipText() {
        return "If true (and forward search is selected) then attributes "
                + "will continue to be added to the best subset as long as merit does " + "not degrade.";
    }

    /**
     * Set whether attributes should continue to be added during a forward search
     * as long as merit does not decrease
     * 
     * @param c true if atts should continue to be atted
     */
    public void setConservativeForwardSelection(boolean c) {
        m_conservativeSelection = c;
    }

    /**
     * Gets whether conservative selection has been enabled
     * 
     * @return true if conservative forward selection is enabled
     */
    public boolean getConservativeForwardSelection() {
        return m_conservativeSelection;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String debuggingOutputTipText() {
        return "Output debugging information to the console";
    }

    /**
     * Set whether to output debugging info to the console
     * 
     * @param d true if dubugging info is to be output
     */
    public void setDebuggingOutput(boolean d) {
        m_debug = d;
    }

    /**
     * Get whether to output debugging info to the console
     * 
     * @return true if dubugging info is to be output
     */
    public boolean getDebuggingOutput() {
        return m_debug;
    }

    /**
     * @return a string to describe the option
     */
    public String numExecutionSlotsTipText() {

        return "The number of execution slots, for example, the number of cores in the CPU.";
    }

    /**
     * Gets the number of threads.
     */
    public int getNumExecutionSlots() {

        return m_poolSize;
    }

    /**
     * Sets the number of threads
     */
    public void setNumExecutionSlots(int nT) {

        m_poolSize = nT;
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     **/
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(8);

        newVector.addElement(new Option("\tUse conservative forward search", "-C", 0, "-C"));

        newVector
                .addElement(new Option("\tUse a backward search instead of a" + "\n\tforward one.", "-B", 0, "-B"));
        newVector.addElement(new Option("\tSpecify a starting set of attributes." + "\n\tEg. 1,3,5-7.", "P", 1,
                "-P <start set>"));

        newVector.addElement(new Option("\tProduce a ranked list of attributes.", "R", 0, "-R"));
        newVector.addElement(
                new Option("\tSpecify a theshold by which attributes" + "\n\tmay be discarded from the ranking."
                        + "\n\tUse in conjuction with -R", "T", 1, "-T <threshold>"));

        newVector.addElement(new Option("\tSpecify number of attributes to select", "N", 1, "-N <num to select>"));

        newVector.addElement(new Option("\t" + numExecutionSlotsTipText() + " (default 1)\n", "-num-slots", 1,
                "-num-slots <int>"));

        newVector.addElement(new Option("\tPrint debugging output", "D", 0, "-D"));

        return newVector.elements();

    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -C
     *  Use conservative forward search
     * </pre>
     * 
     * <pre>
     * -B
     *  Use a backward search instead of a
     *  forward one.
     * </pre>
     * 
     * <pre>
     * -P &lt;start set&gt;
     *  Specify a starting set of attributes.
     *  Eg. 1,3,5-7.
     * </pre>
     * 
     * <pre>
     * -R
     *  Produce a ranked list of attributes.
     * </pre>
     * 
     * <pre>
     * -T &lt;threshold&gt;
     *  Specify a theshold by which attributes
     *  may be discarded from the ranking.
     *  Use in conjuction with -R
     * </pre>
     * 
     * <pre>
     * -N &lt;num to select&gt;
     *  Specify number of attributes to select
     * </pre>
     * 
     * <pre>
     * -num-slots &lt;int&gt;
     *  The number of execution slots, for example, the number of cores in the CPU. (default 1)
     * </pre>
     * 
     * <pre>
     * -D
     *  Print debugging output
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        String optionString;
        resetOptions();

        setSearchBackwards(Utils.getFlag('B', options));

        setConservativeForwardSelection(Utils.getFlag('C', options));

        optionString = Utils.getOption('P', options);
        if (optionString.length() != 0) {
            setStartSet(optionString);
        }

        setGenerateRanking(Utils.getFlag('R', options));

        optionString = Utils.getOption('T', options);
        if (optionString.length() != 0) {
            Double temp;
            temp = Double.valueOf(optionString);
            setThreshold(temp.doubleValue());
        }

        optionString = Utils.getOption('N', options);
        if (optionString.length() != 0) {
            setNumToSelect(Integer.parseInt(optionString));
        }

        optionString = Utils.getOption("num-slots", options);
        if (optionString.length() > 0) {
            setNumExecutionSlots(Integer.parseInt(optionString));
        }

        setDebuggingOutput(Utils.getFlag('D', options));
    }

    /**
     * Gets the current settings of ReliefFAttributeEval.
     * 
     * @return an array of strings suitable for passing to setOptions()
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (getSearchBackwards()) {
            options.add("-B");
        }

        if (getConservativeForwardSelection()) {
            options.add("-C");
        }

        if (!(getStartSet().equals(""))) {
            options.add("-P");
            options.add("" + startSetToString());
        }

        if (getGenerateRanking()) {
            options.add("-R");
        }
        options.add("-T");
        options.add("" + getThreshold());

        options.add("-N");
        options.add("" + getNumToSelect());

        options.add("-num-slots");
        options.add("" + getNumExecutionSlots());

        if (getDebuggingOutput()) {
            options.add("-D");
        }

        return options.toArray(new String[0]);
    }

    /**
     * converts the array of starting attributes to a string. This is used by
     * getOptions to return the actual attributes specified as the starting set.
     * This is better than using m_startRanges.getRanges() as the same start set
     * can be specified in different ways from the command line---eg 1,2,3 == 1-3.
     * This is to ensure that stuff that is stored in a database is comparable.
     * 
     * @return a comma seperated list of individual attribute numbers as a String
     */
    protected String startSetToString() {
        StringBuffer FString = new StringBuffer();
        boolean didPrint;

        if (m_starting == null) {
            return getStartSet();
        }
        for (int i = 0; i < m_starting.length; i++) {
            didPrint = false;

            if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) {
                FString.append((m_starting[i] + 1));
                didPrint = true;
            }

            if (i == (m_starting.length - 1)) {
                FString.append("");
            } else {
                if (didPrint) {
                    FString.append(",");
                }
            }
        }

        return FString.toString();
    }

    /**
     * returns a description of the search.
     * 
     * @return a description of the search as a String.
     */
    @Override
    public String toString() {
        StringBuffer FString = new StringBuffer();
        FString.append("\tGreedy Stepwise (" + ((m_backward) ? "backwards)" : "forwards)") + ".\n\tStart set: ");

        if (m_starting == null) {
            if (m_backward) {
                FString.append("all attributes\n");
            } else {
                FString.append("no attributes\n");
            }
        } else {
            FString.append(startSetToString() + "\n");
        }
        if (!m_doneRanking) {
            FString.append(
                    "\tMerit of best subset found: " + Utils.doubleToString(Math.abs(m_bestMerit), 8, 3) + "\n");
        } else {
            if (m_backward) {
                FString.append("\n\tRanking is the order that attributes were removed, "
                        + "starting \n\twith all attributes. The merit scores in the left"
                        + "\n\tcolumn are the goodness of the remaining attributes in the"
                        + "\n\tsubset after removing the corresponding in the right column"
                        + "\n\tattribute from the subset.\n");
            } else {
                FString.append("\n\tRanking is the order that attributes were added, starting "
                        + "\n\twith no attributes. The merit scores in the left column"
                        + "\n\tare the goodness of the subset after the adding the"
                        + "\n\tcorresponding attribute in the right column to the subset.\n");
            }
        }

        if ((m_threshold != -Double.MAX_VALUE) && (m_doneRanking)) {
            FString.append(
                    "\tThreshold for discarding attributes: " + Utils.doubleToString(m_threshold, 8, 4) + "\n");
        }

        return FString.toString();
    }

    /**
     * Searches the attribute subset space by forward selection.
     * 
     * @param ASEval the attribute evaluator to guide the search
     * @param data the training instances.
     * @return an array (not necessarily ordered) of selected attribute indexes
     * @throws Exception if the search can't be completed
     */
    @Override
    public int[] search(ASEvaluation ASEval, Instances data) throws Exception {

        int i;
        double best_merit = -Double.MAX_VALUE;
        double temp_best, temp_merit;
        int temp_index = 0;
        BitSet temp_group;
        boolean parallel = (m_poolSize > 1);
        if (parallel) {
            m_pool = Executors.newFixedThreadPool(m_poolSize);
        }

        if (data != null) { // this is a fresh run so reset
            resetOptions();
            m_Instances = new Instances(data, 0);
        }
        m_ASEval = ASEval;

        m_numAttribs = m_Instances.numAttributes();

        if (m_best_group == null) {
            m_best_group = new BitSet(m_numAttribs);
        }

        if (!(m_ASEval instanceof SubsetEvaluator)) {
            throw new Exception(m_ASEval.getClass().getName() + " is not a " + "Subset evaluator!");
        }

        m_startRange.setUpper(m_numAttribs - 1);
        if (!(getStartSet().equals(""))) {
            m_starting = m_startRange.getSelection();
        }

        if (m_ASEval instanceof UnsupervisedSubsetEvaluator) {
            m_hasClass = false;
            m_classIndex = -1;
        } else {
            m_hasClass = true;
            m_classIndex = m_Instances.classIndex();
        }

        final SubsetEvaluator ASEvaluator = (SubsetEvaluator) m_ASEval;

        if (m_rankedAtts == null) {
            m_rankedAtts = new double[m_numAttribs][2];
            m_rankedSoFar = 0;
        }

        // If a starting subset has been supplied, then initialise the bitset
        if (m_starting != null && m_rankedSoFar <= 0) {
            for (i = 0; i < m_starting.length; i++) {
                if ((m_starting[i]) != m_classIndex) {
                    m_best_group.set(m_starting[i]);
                }
            }
        } else {
            if (m_backward && m_rankedSoFar <= 0) {
                for (i = 0; i < m_numAttribs; i++) {
                    if (i != m_classIndex) {
                        m_best_group.set(i);
                    }
                }
            }
        }

        // Evaluate the initial subset
        best_merit = ASEvaluator.evaluateSubset(m_best_group);

        // main search loop
        boolean done = false;
        boolean addone = false;
        boolean z;

        if (m_debug && parallel) {
            System.err.println("Evaluating subsets in parallel...");
        }
        while (!done) {
            List<Future<Double[]>> results = new ArrayList<Future<Double[]>>();
            temp_group = (BitSet) m_best_group.clone();
            temp_best = best_merit;
            if (m_doRank) {
                temp_best = -Double.MAX_VALUE;
            }
            done = true;
            addone = false;
            for (i = 0; i < m_numAttribs; i++) {
                if (m_backward) {
                    z = ((i != m_classIndex) && (temp_group.get(i)));
                } else {
                    z = ((i != m_classIndex) && (!temp_group.get(i)));
                }
                if (z) {
                    // set/unset the bit
                    if (m_backward) {
                        temp_group.clear(i);
                    } else {
                        temp_group.set(i);
                    }

                    if (parallel) {
                        final BitSet tempCopy = (BitSet) temp_group.clone();
                        final int attBeingEvaluated = i;

                        // make a copy if the evaluator is not thread safe
                        final SubsetEvaluator theEvaluator = (ASEvaluator instanceof weka.core.ThreadSafe)
                                ? ASEvaluator
                                : (SubsetEvaluator) ASEvaluation.makeCopies(m_ASEval, 1)[0];

                        Future<Double[]> future = m_pool.submit(new Callable<Double[]>() {
                            @Override
                            public Double[] call() throws Exception {
                                Double[] r = new Double[2];
                                double e = theEvaluator.evaluateSubset(tempCopy);
                                r[0] = new Double(attBeingEvaluated);
                                r[1] = e;
                                return r;
                            }
                        });

                        results.add(future);
                    } else {
                        temp_merit = ASEvaluator.evaluateSubset(temp_group);
                        if (m_backward) {
                            z = (temp_merit >= temp_best);
                        } else {
                            if (m_conservativeSelection) {
                                z = (temp_merit >= temp_best);
                            } else {
                                z = (temp_merit > temp_best);
                            }
                        }

                        if (z) {
                            temp_best = temp_merit;
                            temp_index = i;
                            addone = true;
                            done = false;
                        }
                    }

                    // unset this addition/deletion
                    if (m_backward) {
                        temp_group.set(i);
                    } else {
                        temp_group.clear(i);
                    }
                    if (m_doRank) {
                        done = false;
                    }
                }
            }

            if (parallel) {
                for (int j = 0; j < results.size(); j++) {
                    Future<Double[]> f = results.get(j);

                    int index = f.get()[0].intValue();
                    temp_merit = f.get()[1].doubleValue();

                    if (m_backward) {
                        z = (temp_merit >= temp_best);
                    } else {
                        if (m_conservativeSelection) {
                            z = (temp_merit >= temp_best);
                        } else {
                            z = (temp_merit > temp_best);
                        }
                    }

                    if (z) {
                        temp_best = temp_merit;
                        temp_index = index;
                        addone = true;
                        done = false;
                    }
                }
            }

            if (addone) {
                if (m_backward) {
                    m_best_group.clear(temp_index);
                } else {
                    m_best_group.set(temp_index);
                }
                best_merit = temp_best;
                if (m_debug) {
                    System.err.print("Best subset found so far: ");
                    int[] atts = attributeList(m_best_group);
                    for (int a : atts) {
                        System.err.print("" + (a + 1) + " ");
                    }
                    System.err.println("\nMerit: " + best_merit);
                }
                m_rankedAtts[m_rankedSoFar][0] = temp_index;
                m_rankedAtts[m_rankedSoFar][1] = best_merit;
                m_rankedSoFar++;
            }
        }

        if (parallel) {
            m_pool.shutdown();
        }

        m_bestMerit = best_merit;
        return attributeList(m_best_group);
    }

    /**
     * Produces a ranked list of attributes. Search must have been performed prior
     * to calling this function. Search is called by this function to complete the
     * traversal of the the search space. A list of attributes and merits are
     * returned. The attributes a ranked by the order they are added to the subset
     * during a forward selection search. Individual merit values reflect the
     * merit associated with adding the corresponding attribute to the subset;
     * because of this, merit values may initially increase but then decrease as
     * the best subset is "passed by" on the way to the far side of the search
     * space.
     * 
     * @return an array of attribute indexes and associated merit values
     * @throws Exception if something goes wrong.
     */
    @Override
    public double[][] rankedAttributes() throws Exception {

        if (m_rankedAtts == null || m_rankedSoFar == -1) {
            throw new Exception("Search must be performed before attributes " + "can be ranked.");
        }

        m_doRank = true;
        search(m_ASEval, null);

        double[][] final_rank = new double[m_rankedSoFar][2];
        for (int i = 0; i < m_rankedSoFar; i++) {
            final_rank[i][0] = m_rankedAtts[i][0];
            final_rank[i][1] = m_rankedAtts[i][1];
        }

        resetOptions();
        m_doneRanking = true;

        if (m_numToSelect > final_rank.length) {
            throw new Exception("More attributes requested than exist in the data");
        }

        if (m_numToSelect <= 0) {
            if (m_threshold == -Double.MAX_VALUE) {
                m_calculatedNumToSelect = final_rank.length;
            } else {
                determineNumToSelectFromThreshold(final_rank);
            }
        }

        return final_rank;
    }

    private void determineNumToSelectFromThreshold(double[][] ranking) {
        int count = 0;
        for (double[] element : ranking) {
            if (element[1] > m_threshold) {
                count++;
            }
        }
        m_calculatedNumToSelect = count;
    }

    /**
     * converts a BitSet into a list of attribute indexes
     * 
     * @param group the BitSet to convert
     * @return an array of attribute indexes
     **/
    protected int[] attributeList(BitSet group) {
        int count = 0;

        // count how many were selected
        for (int i = 0; i < m_numAttribs; i++) {
            if (group.get(i)) {
                count++;
            }
        }

        int[] list = new int[count];
        count = 0;

        for (int i = 0; i < m_numAttribs; i++) {
            if (group.get(i)) {
                list[count++] = i;
            }
        }

        return list;
    }

    /**
     * Resets options
     */
    protected void resetOptions() {
        m_doRank = false;
        m_best_group = null;
        m_ASEval = null;
        m_Instances = null;
        m_rankedSoFar = -1;
        m_rankedAtts = null;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
}