weka.attributeSelection.CfsSubsetEval.java Source code

Java tutorial

Introduction

Here is the source code for weka.attributeSelection.CfsSubsetEval.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    CfsSubsetEval.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import java.util.BitSet;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Set;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.atomic.AtomicInteger;

import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.ThreadSafe;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;

/**
 * <!-- globalinfo-start --> CfsSubsetEval :<br/>
 * <br/>
 * Evaluates the worth of a subset of attributes by considering the individual
 * predictive ability of each feature along with the degree of redundancy
 * between them.<br/>
 * <br/>
 * Subsets of features that are highly correlated with the class while having
 * low intercorrelation are preferred.<br/>
 * <br/>
 * For more information see:<br/>
 * <br/>
 * M. A. Hall (1998). Correlation-based Feature Subset Selection for Machine
 * Learning. Hamilton, New Zealand.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- technical-bibtex-start --> BibTeX:
 * 
 * <pre>
 * &#64;phdthesis{Hall1998,
 *    address = {Hamilton, New Zealand},
 *    author = {M. A. Hall},
 *    school = {University of Waikato},
 *    title = {Correlation-based Feature Subset Selection for Machine Learning},
 *    year = {1998}
 * }
 * </pre>
 * <p/>
 * <!-- technical-bibtex-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -M
 *  Treat missing values as a separate value.
 * </pre>
 * 
 * <pre>
 * -L
 *  Don't include locally predictive attributes.
 * </pre>
 * 
 * <pre>
 * -Z
 *  Precompute the full correlation matrix at the outset, rather than compute correlations lazily (as needed) during the search. Use this in conjuction with parallel processing in order to speed up a backward search.
 * </pre>
 * 
 * <pre>
 * -P &lt;int&gt;
 *  The size of the thread pool, for example, the number of cores in the CPU. (default 1)
 * </pre>
 * 
 * <pre>
 * -E &lt;int&gt;
 *  The number of threads to use, which should be &gt;= size of thread pool. (default 1)
 * </pre>
 * 
 * <pre>
 * -D
 *  Output debugging info.
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @version $Revision$
 * @see Discretize
 */
public class CfsSubsetEval extends ASEvaluation
        implements SubsetEvaluator, ThreadSafe, OptionHandler, TechnicalInformationHandler {

    /** for serialization */
    static final long serialVersionUID = 747878400813276317L;

    /** The training instances */
    private Instances m_trainInstances;
    /** Discretise attributes when class in nominal */
    private Discretize m_disTransform;
    /** The class index */
    private int m_classIndex;
    /** Is the class numeric */
    private boolean m_isNumeric;
    /** Number of attributes in the training data */
    private int m_numAttribs;
    /** Number of instances in the training data */
    private int m_numInstances;
    /** Treat missing values as separate values */
    private boolean m_missingSeparate;
    /** Include locally predictive attributes */
    private boolean m_locallyPredictive;
    /** Holds the matrix of attribute correlations */
    // private Matrix m_corr_matrix;
    private float[][] m_corr_matrix;
    /** Standard deviations of attributes (when using pearsons correlation) */
    private double[] m_std_devs;
    /** Threshold for admitting locally predictive features */
    private double m_c_Threshold;

    /** Output debugging info */
    protected boolean m_debug;

    /** Number of entries in the correlation matrix */
    protected int m_numEntries;

    /** Number of correlations actually computed */
    protected AtomicInteger m_numFilled;

    protected boolean m_preComputeCorrelationMatrix;

    /**
     * The number of threads used to compute the correlation matrix. Used when
     * correlation matrix is precomputed
     */
    protected int m_numThreads = 1;

    /**
     * The size of the thread pool. Usually set equal to the number of CPUs or CPU
     * cores available
     */
    protected int m_poolSize = 1;

    /** Thread pool */
    protected transient ExecutorService m_pool = null;

    /**
     * Returns a string describing this attribute evaluator
     * 
     * @return a description of the evaluator suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "CfsSubsetEval :\n\nEvaluates the worth of a subset of attributes "
                + "by considering the individual predictive ability of each feature "
                + "along with the degree of redundancy between them.\n\n"
                + "Subsets of features that are highly correlated with the class "
                + "while having low intercorrelation are preferred.\n\n" + "For more information see:\n\n"
                + getTechnicalInformation().toString();
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;

        result = new TechnicalInformation(Type.PHDTHESIS);
        result.setValue(Field.AUTHOR, "M. A. Hall");
        result.setValue(Field.YEAR, "1998");
        result.setValue(Field.TITLE, "Correlation-based Feature Subset Selection for Machine Learning");
        result.setValue(Field.SCHOOL, "University of Waikato");
        result.setValue(Field.ADDRESS, "Hamilton, New Zealand");

        return result;
    }

    /**
     * Constructor
     */
    public CfsSubsetEval() {
        resetOptions();
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     * 
     **/
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(6);
        newVector.addElement(new Option("\tTreat missing values as a separate " + "value.", "M", 0, "-M"));
        newVector.addElement(new Option("\tDon't include locally predictive attributes" + ".", "L", 0, "-L"));

        newVector.addElement(new Option("\t" + preComputeCorrelationMatrixTipText(), "Z", 0, "-Z"));

        newVector.addElement(new Option("\t" + poolSizeTipText() + " (default 1)\n", "P", 1, "-P <int>"));
        newVector.addElement(new Option("\t" + numThreadsTipText() + " (default 1)\n", "E", 1, "-E <int>"));
        newVector.addElement(new Option("\tOutput debugging info" + ".", "D", 0, "-D"));
        return newVector.elements();
    }

    /**
     * Parses and sets a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -M
     *  Treat missing values as a separate value.
     * </pre>
     * 
     * <pre>
     * -L
     *  Don't include locally predictive attributes.
     * </pre>
     * 
     * <pre>
     * -Z
     *  Precompute the full correlation matrix at the outset, rather than compute correlations lazily (as needed) during the search. Use this in conjuction with parallel processing in order to speed up a backward search.
     * </pre>
     * 
     * <pre>
     * -P &lt;int&gt;
     *  The size of the thread pool, for example, the number of cores in the CPU. (default 1)
     * </pre>
     * 
     * <pre>
     * -E &lt;int&gt;
     *  The number of threads to use, which should be &gt;= size of thread pool. (default 1)
     * </pre>
     * 
     * <pre>
     * -D
     *  Output debugging info.
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     * 
     **/
    @Override
    public void setOptions(String[] options) throws Exception {

        resetOptions();
        setMissingSeparate(Utils.getFlag('M', options));
        setLocallyPredictive(!Utils.getFlag('L', options));
        setPreComputeCorrelationMatrix(Utils.getFlag('Z', options));

        String PoolSize = Utils.getOption('P', options);
        if (PoolSize.length() != 0) {
            setPoolSize(Integer.parseInt(PoolSize));
        } else {
            setPoolSize(1);
        }
        String NumThreads = Utils.getOption('E', options);
        if (NumThreads.length() != 0) {
            setNumThreads(Integer.parseInt(NumThreads));
        } else {
            setNumThreads(1);
        }

        setDebug(Utils.getFlag('D', options));
    }

    /**
     * @return a string to describe the option
     */
    public String preComputeCorrelationMatrixTipText() {
        return "Precompute the full correlation matrix at the outset, "
                + "rather than compute correlations lazily (as needed) "
                + "during the search. Use this in conjuction with "
                + "parallel processing in order to speed up a backward " + "search.";
    }

    /**
     * Set whether to pre-compute the full correlation matrix at the outset,
     * rather than computing individual correlations lazily (as needed) during the
     * search.
     * 
     * @param p true if the correlation matrix is to be pre-computed at the outset
     */
    public void setPreComputeCorrelationMatrix(boolean p) {
        m_preComputeCorrelationMatrix = p;
    }

    /**
     * Get whether to pre-compute the full correlation matrix at the outset,
     * rather than computing individual correlations lazily (as needed) during the
     * search.
     * 
     * @return true if the correlation matrix is to be pre-computed at the outset
     */
    public boolean getPreComputeCorrelationMatrix() {
        return m_preComputeCorrelationMatrix;
    }

    /**
     * @return a string to describe the option
     */
    public String numThreadsTipText() {

        return "The number of threads to use, which should be >= size of thread pool.";
    }

    /**
     * Gets the number of threads.
     */
    public int getNumThreads() {

        return m_numThreads;
    }

    /**
     * Sets the number of threads
     */
    public void setNumThreads(int nT) {

        m_numThreads = nT;
    }

    /**
     * @return a string to describe the option
     */
    public String poolSizeTipText() {

        return "The size of the thread pool, for example, the number of cores in the CPU.";
    }

    /**
     * Gets the number of threads.
     */
    public int getPoolSize() {

        return m_poolSize;
    }

    /**
     * Sets the number of threads
     */
    public void setPoolSize(int nT) {

        m_poolSize = nT;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String locallyPredictiveTipText() {
        return "Identify locally predictive attributes. Iteratively adds "
                + "attributes with the highest correlation with the class as long "
                + "as there is not already an attribute in the subset that has a "
                + "higher correlation with the attribute in question";
    }

    /**
     * Include locally predictive attributes
     * 
     * @param b true or false
     */
    public void setLocallyPredictive(boolean b) {
        m_locallyPredictive = b;
    }

    /**
     * Return true if including locally predictive attributes
     * 
     * @return true if locally predictive attributes are to be used
     */
    public boolean getLocallyPredictive() {
        return m_locallyPredictive;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String missingSeparateTipText() {
        return "Treat missing as a separate value. Otherwise, counts for missing "
                + "values are distributed across other values in proportion to their " + "frequency.";
    }

    /**
     * Treat missing as a separate value
     * 
     * @param b true or false
     */
    public void setMissingSeparate(boolean b) {
        m_missingSeparate = b;
    }

    /**
     * Return true is missing is treated as a separate value
     * 
     * @return true if missing is to be treated as a separate value
     */
    public boolean getMissingSeparate() {
        return m_missingSeparate;
    }

    /**
     * Set whether to output debugging info
     * 
     * @param d true if debugging info is to be output
     */
    public void setDebug(boolean d) {
        m_debug = d;
    }

    /**
     * Set whether to output debugging info
     * 
     * @return true if debugging info is to be output
     */
    public boolean getDebug() {
        return m_debug;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String debugTipText() {
        return "Output debugging info";
    }

    /**
     * Gets the current settings of CfsSubsetEval
     * 
     * @return an array of strings suitable for passing to setOptions()
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (getMissingSeparate()) {
            options.add("-M");
        }

        if (!getLocallyPredictive()) {
            options.add("-L");
        }

        if (getPreComputeCorrelationMatrix()) {
            options.add("-Z");
        }

        options.add("-P");
        options.add("" + getPoolSize());

        options.add("-E");
        options.add("" + getNumThreads());

        if (getDebug()) {
            options.add("-D");
        }

        return options.toArray(new String[0]);
    }

    /**
     * Returns the capabilities of this evaluator.
     * 
     * @return the capabilities of this evaluator
     * @see Capabilities
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.NUMERIC_CLASS);
        result.enable(Capability.DATE_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Generates a attribute evaluator. Has to initialize all fields of the
     * evaluator that are not being set via options.
     * 
     * CFS also discretises attributes (if necessary) and initializes the
     * correlation matrix.
     * 
     * @param data set of instances serving as training data
     * @throws Exception if the evaluator has not been generated successfully
     */
    @Override
    public void buildEvaluator(Instances data) throws Exception {

        // can evaluator handle data?
        getCapabilities().testWithFail(data);

        m_numEntries = 0;
        m_numFilled = new AtomicInteger();

        m_trainInstances = new Instances(data);
        m_trainInstances.deleteWithMissingClass();
        m_classIndex = m_trainInstances.classIndex();
        m_numAttribs = m_trainInstances.numAttributes();
        m_numInstances = m_trainInstances.numInstances();
        m_isNumeric = m_trainInstances.attribute(m_classIndex).isNumeric();

        if (!m_isNumeric) {
            m_disTransform = new Discretize();
            m_disTransform.setUseBetterEncoding(true);
            m_disTransform.setInputFormat(m_trainInstances);
            m_trainInstances = Filter.useFilter(m_trainInstances, m_disTransform);
            if (m_debug) {
                System.err.println("Finished discretizing input data");
            }
        }

        m_std_devs = new double[m_numAttribs];
        m_corr_matrix = new float[m_numAttribs][];
        for (int i = 0; i < m_numAttribs; i++) {
            m_corr_matrix[i] = new float[i + 1];
            m_numEntries += (i + 1);
        }
        m_numEntries -= m_numAttribs;

        for (int i = 0; i < m_corr_matrix.length; i++) {
            m_corr_matrix[i][i] = 1.0f;
            m_std_devs[i] = 1.0;
        }

        for (int i = 0; i < m_numAttribs; i++) {
            for (int j = 0; j < m_corr_matrix[i].length - 1; j++) {
                m_corr_matrix[i][j] = -999;
            }
        }

        if (m_preComputeCorrelationMatrix && m_poolSize > 1) {
            m_pool = Executors.newFixedThreadPool(m_poolSize);

            Set<Future<Void>> results = new HashSet<Future<Void>>();
            int numEntriesPerThread = (m_numEntries + m_numAttribs) / m_numThreads;
            numEntriesPerThread = numEntriesPerThread < 1 ? 1 : numEntriesPerThread;

            int startRow = 0;
            int startCol = 0;

            int count = 0;
            for (int i = 0; i < m_corr_matrix.length; i++) {
                for (int j = 0; j < m_corr_matrix[i].length; j++) {
                    count++;
                    if (count == numEntriesPerThread
                            || (i == m_corr_matrix.length - 1 && j == m_corr_matrix[i].length - 1)) {
                        final int sR = startRow;
                        final int sC = startCol;
                        final int eR = i;
                        final int eC = j;

                        startRow = i;
                        startCol = j;
                        count = 0;

                        Future<Void> future = m_pool.submit(new Callable<Void>() {
                            @Override
                            public Void call() throws Exception {
                                if (m_debug) {
                                    System.err.println("Starting correlation computation task...");
                                }
                                for (int i = sR; i <= eR; i++) {
                                    for (int j = (i == sR ? sC : 0); j < (i == eR ? eC
                                            : m_corr_matrix[i].length); j++) {
                                        if (m_corr_matrix[i][j] == -999) {
                                            float corr = correlate(i, j);
                                            m_corr_matrix[i][j] = corr;
                                        }
                                    }
                                }
                                if (m_debug) {
                                    System.err
                                            .println("Percentage of correlation matrix computed: "
                                                    + Utils.doubleToString(
                                                            ((double) m_numFilled.get() / m_numEntries * 100.0), 2)
                                                    + "%");
                                }

                                return null;
                            }
                        });
                        results.add(future);
                    }
                }
            }

            for (Future<Void> f : results) {
                f.get();
            }

            // shut down the thread pool
            m_pool.shutdown();
        }
    }

    /**
     * evaluates a subset of attributes
     * 
     * @param subset a bitset representing the attribute subset to be evaluated
     * @return the merit
     * @throws Exception if the subset could not be evaluated
     */
    @Override
    public double evaluateSubset(BitSet subset) throws Exception {
        double num = 0.0;
        double denom = 0.0;
        float corr;
        int larger, smaller;
        // do numerator
        for (int i = 0; i < m_numAttribs; i++) {
            if (i != m_classIndex) {
                if (subset.get(i)) {
                    if (i > m_classIndex) {
                        larger = i;
                        smaller = m_classIndex;
                    } else {
                        smaller = i;
                        larger = m_classIndex;
                    }
                    /*
                     * int larger = (i > m_classIndex ? i : m_classIndex); int smaller =
                     * (i > m_classIndex ? m_classIndex : i);
                     */
                    if (m_corr_matrix[larger][smaller] == -999) {
                        corr = correlate(i, m_classIndex);
                        m_corr_matrix[larger][smaller] = corr;
                        num += (m_std_devs[i] * corr);
                    } else {
                        num += (m_std_devs[i] * m_corr_matrix[larger][smaller]);
                    }
                }
            }
        }

        // do denominator
        for (int i = 0; i < m_numAttribs; i++) {
            if (i != m_classIndex) {
                if (subset.get(i)) {
                    denom += (1.0 * m_std_devs[i] * m_std_devs[i]);

                    for (int j = 0; j < m_corr_matrix[i].length - 1; j++) {
                        if (subset.get(j)) {
                            if (m_corr_matrix[i][j] == -999) {
                                corr = correlate(i, j);
                                m_corr_matrix[i][j] = corr;
                                denom += (2.0 * m_std_devs[i] * m_std_devs[j] * corr);
                            } else {
                                denom += (2.0 * m_std_devs[i] * m_std_devs[j] * m_corr_matrix[i][j]);
                            }
                        }
                    }
                }
            }
        }

        if (denom < 0.0) {
            denom *= -1.0;
        }

        if (denom == 0.0) {
            return (0.0);
        }

        double merit = (num / Math.sqrt(denom));

        if (merit < 0.0) {
            merit *= -1.0;
        }

        return merit;
    }

    private float correlate(int att1, int att2) {

        m_numFilled.addAndGet(1);

        if (!m_isNumeric) {
            return (float) symmUncertCorr(att1, att2);
        }

        boolean att1_is_num = (m_trainInstances.attribute(att1).isNumeric());
        boolean att2_is_num = (m_trainInstances.attribute(att2).isNumeric());

        if (att1_is_num && att2_is_num) {
            return (float) num_num(att1, att2);
        } else {
            if (att2_is_num) {
                return (float) num_nom2(att1, att2);
            } else {
                if (att1_is_num) {
                    return (float) num_nom2(att2, att1);
                }
            }
        }

        return (float) nom_nom(att1, att2);
    }

    private double symmUncertCorr(int att1, int att2) {
        int i, j, ii, jj;
        int ni, nj;
        double sum = 0.0;
        double sumi[], sumj[];
        double counts[][];
        Instance inst;
        double corr_measure;
        boolean flag = false;
        double temp = 0.0;

        if (att1 == m_classIndex || att2 == m_classIndex) {
            flag = true;
        }

        ni = m_trainInstances.attribute(att1).numValues() + 1;
        nj = m_trainInstances.attribute(att2).numValues() + 1;
        counts = new double[ni][nj];
        sumi = new double[ni];
        sumj = new double[nj];

        for (i = 0; i < ni; i++) {
            sumi[i] = 0.0;

            for (j = 0; j < nj; j++) {
                sumj[j] = 0.0;
                counts[i][j] = 0.0;
            }
        }

        // Fill the contingency table
        for (i = 0; i < m_numInstances; i++) {
            inst = m_trainInstances.instance(i);

            if (inst.isMissing(att1)) {
                ii = ni - 1;
            } else {
                ii = (int) inst.value(att1);
            }

            if (inst.isMissing(att2)) {
                jj = nj - 1;
            } else {
                jj = (int) inst.value(att2);
            }

            counts[ii][jj]++;
        }

        // get the row totals
        for (i = 0; i < ni; i++) {
            sumi[i] = 0.0;

            for (j = 0; j < nj; j++) {
                sumi[i] += counts[i][j];
                sum += counts[i][j];
            }
        }

        // get the column totals
        for (j = 0; j < nj; j++) {
            sumj[j] = 0.0;

            for (i = 0; i < ni; i++) {
                sumj[j] += counts[i][j];
            }
        }

        // distribute missing counts
        if (!m_missingSeparate && (sumi[ni - 1] < m_numInstances) && (sumj[nj - 1] < m_numInstances)) {
            double[] i_copy = new double[sumi.length];
            double[] j_copy = new double[sumj.length];
            double[][] counts_copy = new double[sumi.length][sumj.length];

            for (i = 0; i < ni; i++) {
                System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length);
            }

            System.arraycopy(sumi, 0, i_copy, 0, sumi.length);
            System.arraycopy(sumj, 0, j_copy, 0, sumj.length);
            double total_missing = (sumi[ni - 1] + sumj[nj - 1] - counts[ni - 1][nj - 1]);

            // do the missing i's
            if (sumi[ni - 1] > 0.0) {
                for (j = 0; j < nj - 1; j++) {
                    if (counts[ni - 1][j] > 0.0) {
                        for (i = 0; i < ni - 1; i++) {
                            temp = ((i_copy[i] / (sum - i_copy[ni - 1])) * counts[ni - 1][j]);
                            counts[i][j] += temp;
                            sumi[i] += temp;
                        }

                        counts[ni - 1][j] = 0.0;
                    }
                }
            }

            sumi[ni - 1] = 0.0;

            // do the missing j's
            if (sumj[nj - 1] > 0.0) {
                for (i = 0; i < ni - 1; i++) {
                    if (counts[i][nj - 1] > 0.0) {
                        for (j = 0; j < nj - 1; j++) {
                            temp = ((j_copy[j] / (sum - j_copy[nj - 1])) * counts[i][nj - 1]);
                            counts[i][j] += temp;
                            sumj[j] += temp;
                        }

                        counts[i][nj - 1] = 0.0;
                    }
                }
            }

            sumj[nj - 1] = 0.0;

            // do the both missing
            if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) {
                for (i = 0; i < ni - 1; i++) {
                    for (j = 0; j < nj - 1; j++) {
                        temp = (counts_copy[i][j] / (sum - total_missing)) * counts_copy[ni - 1][nj - 1];

                        counts[i][j] += temp;
                        sumi[i] += temp;
                        sumj[j] += temp;
                    }
                }

                counts[ni - 1][nj - 1] = 0.0;
            }
        }

        corr_measure = ContingencyTables.symmetricalUncertainty(counts);

        if (Utils.eq(corr_measure, 0.0)) {
            if (flag == true) {
                return (0.0);
            } else {
                return (1.0);
            }
        } else {
            return (corr_measure);
        }
    }

    private double num_num(int att1, int att2) {
        int i;
        Instance inst;
        double r, diff1, diff2, num = 0.0, sx = 0.0, sy = 0.0;
        double mx = m_trainInstances.meanOrMode(m_trainInstances.attribute(att1));
        double my = m_trainInstances.meanOrMode(m_trainInstances.attribute(att2));

        for (i = 0; i < m_numInstances; i++) {
            inst = m_trainInstances.instance(i);
            diff1 = (inst.isMissing(att1)) ? 0.0 : (inst.value(att1) - mx);
            diff2 = (inst.isMissing(att2)) ? 0.0 : (inst.value(att2) - my);
            num += (diff1 * diff2);
            sx += (diff1 * diff1);
            sy += (diff2 * diff2);
        }

        if (sx != 0.0) {
            if (m_std_devs[att1] == 1.0) {
                m_std_devs[att1] = Math.sqrt((sx / m_numInstances));
            }
        }

        if (sy != 0.0) {
            if (m_std_devs[att2] == 1.0) {
                m_std_devs[att2] = Math.sqrt((sy / m_numInstances));
            }
        }

        if ((sx * sy) > 0.0) {
            r = (num / (Math.sqrt(sx * sy)));
            return ((r < 0.0) ? -r : r);
        } else {
            if (att1 != m_classIndex && att2 != m_classIndex) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
    }

    private double num_nom2(int att1, int att2) {
        int i, ii, k;
        double temp;
        Instance inst;
        int mx = (int) m_trainInstances.meanOrMode(m_trainInstances.attribute(att1));
        double my = m_trainInstances.meanOrMode(m_trainInstances.attribute(att2));
        double stdv_num = 0.0;
        double diff1, diff2;
        double r = 0.0, rr;
        int nx = (!m_missingSeparate) ? m_trainInstances.attribute(att1).numValues()
                : m_trainInstances.attribute(att1).numValues() + 1;

        double[] prior_nom = new double[nx];
        double[] stdvs_nom = new double[nx];
        double[] covs = new double[nx];

        for (i = 0; i < nx; i++) {
            stdvs_nom[i] = covs[i] = prior_nom[i] = 0.0;
        }

        // calculate frequencies (and means) of the values of the nominal
        // attribute
        for (i = 0; i < m_numInstances; i++) {
            inst = m_trainInstances.instance(i);

            if (inst.isMissing(att1)) {
                if (!m_missingSeparate) {
                    ii = mx;
                } else {
                    ii = nx - 1;
                }
            } else {
                ii = (int) inst.value(att1);
            }

            // increment freq for nominal
            prior_nom[ii]++;
        }

        for (k = 0; k < m_numInstances; k++) {
            inst = m_trainInstances.instance(k);
            // std dev of numeric attribute
            diff2 = (inst.isMissing(att2)) ? 0.0 : (inst.value(att2) - my);
            stdv_num += (diff2 * diff2);

            //
            for (i = 0; i < nx; i++) {
                if (inst.isMissing(att1)) {
                    if (!m_missingSeparate) {
                        temp = (i == mx) ? 1.0 : 0.0;
                    } else {
                        temp = (i == (nx - 1)) ? 1.0 : 0.0;
                    }
                } else {
                    temp = (i == inst.value(att1)) ? 1.0 : 0.0;
                }

                diff1 = (temp - (prior_nom[i] / m_numInstances));
                stdvs_nom[i] += (diff1 * diff1);
                covs[i] += (diff1 * diff2);
            }
        }

        // calculate weighted correlation
        for (i = 0, temp = 0.0; i < nx; i++) {
            // calculate the weighted variance of the nominal
            temp += ((prior_nom[i] / m_numInstances) * (stdvs_nom[i] / m_numInstances));

            if ((stdvs_nom[i] * stdv_num) > 0.0) {
                // System.out.println("Stdv :"+stdvs_nom[i]);
                rr = (covs[i] / (Math.sqrt(stdvs_nom[i] * stdv_num)));

                if (rr < 0.0) {
                    rr = -rr;
                }

                r += ((prior_nom[i] / m_numInstances) * rr);
            }
            /*
             * if there is zero variance for the numeric att at a specific level of
             * the catergorical att then if neither is the class then make this
             * correlation at this level maximally bad i.e. 1.0. If either is the
             * class then maximally bad correlation is 0.0
             */
            else {
                if (att1 != m_classIndex && att2 != m_classIndex) {
                    r += ((prior_nom[i] / m_numInstances) * 1.0);
                }
            }
        }

        // set the standard deviations for these attributes if necessary
        // if ((att1 != classIndex) && (att2 != classIndex)) // =============
        if (temp != 0.0) {
            if (m_std_devs[att1] == 1.0) {
                m_std_devs[att1] = Math.sqrt(temp);
            }
        }

        if (stdv_num != 0.0) {
            if (m_std_devs[att2] == 1.0) {
                m_std_devs[att2] = Math.sqrt((stdv_num / m_numInstances));
            }
        }

        if (r == 0.0) {
            if (att1 != m_classIndex && att2 != m_classIndex) {
                r = 1.0;
            }
        }

        return r;
    }

    private double nom_nom(int att1, int att2) {
        int i, j, ii, jj, z;
        double temp1, temp2;
        Instance inst;
        int mx = (int) m_trainInstances.meanOrMode(m_trainInstances.attribute(att1));
        int my = (int) m_trainInstances.meanOrMode(m_trainInstances.attribute(att2));
        double diff1, diff2;
        double r = 0.0, rr;
        int nx = (!m_missingSeparate) ? m_trainInstances.attribute(att1).numValues()
                : m_trainInstances.attribute(att1).numValues() + 1;

        int ny = (!m_missingSeparate) ? m_trainInstances.attribute(att2).numValues()
                : m_trainInstances.attribute(att2).numValues() + 1;

        double[][] prior_nom = new double[nx][ny];
        double[] sumx = new double[nx];
        double[] sumy = new double[ny];
        double[] stdvsx = new double[nx];
        double[] stdvsy = new double[ny];
        double[][] covs = new double[nx][ny];

        for (i = 0; i < nx; i++) {
            sumx[i] = stdvsx[i] = 0.0;
        }

        for (j = 0; j < ny; j++) {
            sumy[j] = stdvsy[j] = 0.0;
        }

        for (i = 0; i < nx; i++) {
            for (j = 0; j < ny; j++) {
                covs[i][j] = prior_nom[i][j] = 0.0;
            }
        }

        // calculate frequencies (and means) of the values of the nominal
        // attribute
        for (i = 0; i < m_numInstances; i++) {
            inst = m_trainInstances.instance(i);

            if (inst.isMissing(att1)) {
                if (!m_missingSeparate) {
                    ii = mx;
                } else {
                    ii = nx - 1;
                }
            } else {
                ii = (int) inst.value(att1);
            }

            if (inst.isMissing(att2)) {
                if (!m_missingSeparate) {
                    jj = my;
                } else {
                    jj = ny - 1;
                }
            } else {
                jj = (int) inst.value(att2);
            }

            // increment freq for nominal
            prior_nom[ii][jj]++;
            sumx[ii]++;
            sumy[jj]++;
        }

        for (z = 0; z < m_numInstances; z++) {
            inst = m_trainInstances.instance(z);

            for (j = 0; j < ny; j++) {
                if (inst.isMissing(att2)) {
                    if (!m_missingSeparate) {
                        temp2 = (j == my) ? 1.0 : 0.0;
                    } else {
                        temp2 = (j == (ny - 1)) ? 1.0 : 0.0;
                    }
                } else {
                    temp2 = (j == inst.value(att2)) ? 1.0 : 0.0;
                }

                diff2 = (temp2 - (sumy[j] / m_numInstances));
                stdvsy[j] += (diff2 * diff2);
            }

            //
            for (i = 0; i < nx; i++) {
                if (inst.isMissing(att1)) {
                    if (!m_missingSeparate) {
                        temp1 = (i == mx) ? 1.0 : 0.0;
                    } else {
                        temp1 = (i == (nx - 1)) ? 1.0 : 0.0;
                    }
                } else {
                    temp1 = (i == inst.value(att1)) ? 1.0 : 0.0;
                }

                diff1 = (temp1 - (sumx[i] / m_numInstances));
                stdvsx[i] += (diff1 * diff1);

                for (j = 0; j < ny; j++) {
                    if (inst.isMissing(att2)) {
                        if (!m_missingSeparate) {
                            temp2 = (j == my) ? 1.0 : 0.0;
                        } else {
                            temp2 = (j == (ny - 1)) ? 1.0 : 0.0;
                        }
                    } else {
                        temp2 = (j == inst.value(att2)) ? 1.0 : 0.0;
                    }

                    diff2 = (temp2 - (sumy[j] / m_numInstances));
                    covs[i][j] += (diff1 * diff2);
                }
            }
        }

        // calculate weighted correlation
        for (i = 0; i < nx; i++) {
            for (j = 0; j < ny; j++) {
                if ((stdvsx[i] * stdvsy[j]) > 0.0) {
                    // System.out.println("Stdv :"+stdvs_nom[i]);
                    rr = (covs[i][j] / (Math.sqrt(stdvsx[i] * stdvsy[j])));

                    if (rr < 0.0) {
                        rr = -rr;
                    }

                    r += ((prior_nom[i][j] / m_numInstances) * rr);
                }
                // if there is zero variance for either of the categorical atts then if
                // neither is the class then make this
                // correlation at this level maximally bad i.e. 1.0. If either is
                // the class then maximally bad correlation is 0.0
                else {
                    if (att1 != m_classIndex && att2 != m_classIndex) {
                        r += ((prior_nom[i][j] / m_numInstances) * 1.0);
                    }
                }
            }
        }

        // calculate weighted standard deviations for these attributes
        // (if necessary)
        for (i = 0, temp1 = 0.0; i < nx; i++) {
            temp1 += ((sumx[i] / m_numInstances) * (stdvsx[i] / m_numInstances));
        }

        if (temp1 != 0.0) {
            if (m_std_devs[att1] == 1.0) {
                m_std_devs[att1] = Math.sqrt(temp1);
            }
        }

        for (j = 0, temp2 = 0.0; j < ny; j++) {
            temp2 += ((sumy[j] / m_numInstances) * (stdvsy[j] / m_numInstances));
        }

        if (temp2 != 0.0) {
            if (m_std_devs[att2] == 1.0) {
                m_std_devs[att2] = Math.sqrt(temp2);
            }
        }

        if (r == 0.0) {
            if (att1 != m_classIndex && att2 != m_classIndex) {
                r = 1.0;
            }
        }

        return r;
    }

    /**
     * returns a string describing CFS
     * 
     * @return the description as a string
     */
    @Override
    public String toString() {
        StringBuffer text = new StringBuffer();

        if (m_trainInstances == null) {
            text.append("CFS subset evaluator has not been built yet\n");
        } else {
            text.append("\tCFS Subset Evaluator\n");

            if (m_missingSeparate) {
                text.append("\tTreating missing values as a separate value\n");
            }

            if (m_locallyPredictive) {
                text.append("\tIncluding locally predictive attributes\n");
            }
        }

        return text.toString();
    }

    private void addLocallyPredictive(BitSet best_group) {
        int i, j;
        boolean done = false;
        boolean ok = true;
        double temp_best = -1.0;
        float corr;
        j = 0;
        BitSet temp_group = (BitSet) best_group.clone();
        int larger, smaller;

        while (!done) {
            temp_best = -1.0;

            // find best not already in group
            for (i = 0; i < m_numAttribs; i++) {
                if (i > m_classIndex) {
                    larger = i;
                    smaller = m_classIndex;
                } else {
                    smaller = i;
                    larger = m_classIndex;
                }
                /*
                 * int larger = (i > m_classIndex ? i : m_classIndex); int smaller = (i
                 * > m_classIndex ? m_classIndex : i);
                 */
                if ((!temp_group.get(i)) && (i != m_classIndex)) {
                    if (m_corr_matrix[larger][smaller] == -999) {
                        corr = correlate(i, m_classIndex);
                        m_corr_matrix[larger][smaller] = corr;
                    }

                    if (m_corr_matrix[larger][smaller] > temp_best) {
                        temp_best = m_corr_matrix[larger][smaller];
                        j = i;
                    }
                }
            }

            if (temp_best == -1.0) {
                done = true;
            } else {
                ok = true;
                temp_group.set(j);

                // check the best against correlations with others already
                // in group
                for (i = 0; i < m_numAttribs; i++) {
                    if (i > j) {
                        larger = i;
                        smaller = j;
                    } else {
                        larger = j;
                        smaller = i;
                    }
                    /*
                     * int larger = (i > j ? i : j); int smaller = (i > j ? j : i);
                     */
                    if (best_group.get(i)) {
                        if (m_corr_matrix[larger][smaller] == -999) {
                            corr = correlate(i, j);
                            m_corr_matrix[larger][smaller] = corr;
                        }

                        if (m_corr_matrix[larger][smaller] > temp_best - m_c_Threshold) {
                            ok = false;
                            break;
                        }
                    }
                }

                // if ok then add to best_group
                if (ok) {
                    best_group.set(j);
                }
            }
        }
    }

    /**
     * Calls locallyPredictive in order to include locally predictive attributes
     * (if requested).
     * 
     * @param attributeSet the set of attributes found by the search
     * @return a possibly ranked list of postprocessed attributes
     * @throws Exception if postprocessing fails for some reason
     */
    @Override
    public int[] postProcess(int[] attributeSet) throws Exception {

        if (m_debug) {
            System.err.println("Percentage of correlation matrix computed " + "over the search: "
                    + Utils.doubleToString(((double) m_numFilled.get() / m_numEntries * 100.0), 2) + "%");
        }

        int j = 0;

        if (!m_locallyPredictive) {
            return attributeSet;
        }

        BitSet bestGroup = new BitSet(m_numAttribs);

        for (int element : attributeSet) {
            bestGroup.set(element);
        }

        addLocallyPredictive(bestGroup);

        // count how many are set
        for (int i = 0; i < m_numAttribs; i++) {
            if (bestGroup.get(i)) {
                j++;
            }
        }

        int[] newSet = new int[j];
        j = 0;

        for (int i = 0; i < m_numAttribs; i++) {
            if (bestGroup.get(i)) {
                newSet[j++] = i;
            }
        }

        return newSet;
    }

    @Override
    public void clean() {
        if (m_trainInstances != null) {
            // save memory
            m_trainInstances = new Instances(m_trainInstances, 0);
        }
    }

    protected void resetOptions() {
        m_trainInstances = null;
        m_missingSeparate = false;
        m_locallyPredictive = true;
        m_c_Threshold = 0.0;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param args the options
     */
    public static void main(String[] args) {
        runEvaluator(new CfsSubsetEval(), args);
    }
}