Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package wedt.project; import java.io.File; import java.util.ArrayList; import java.util.List; import weka.classifiers.Classifier; import weka.classifiers.bayes.NaiveBayes; import weka.core.Instance; import weka.core.Instances; /** * * @author Micha */ public class BayesClassifier { private Classifier cls; BayesClassifier() { cls = new NaiveBayes(); } public int setParameters(String params) { try { ((NaiveBayes) cls).setOptions(weka.core.Utils.splitOptions(params)); return 0; } catch (Exception e) { System.out.println(e.getMessage()); return -1; } } public void train(File file, Common cmn) { Instances instances = cmn.getPrepapredSet(file); try { cls.buildClassifier(instances); weka.core.SerializationHelper.write("Bayes.model", cls); } catch (Exception e) { System.out.println("Blad uczenia Bayes"); } } public String classifySingle(String tweet, Common cmn) { try { System.out.println("==== Bayes ===="); cls = (Classifier) weka.core.SerializationHelper.read("Bayes.model"); Instances instances = cmn.prepareSingle(tweet); double score = cls.classifyInstance(instances.firstInstance()); double dist[] = cls.distributionForInstance(instances.firstInstance()); // dokladne dane System.out.println("dist: " + dist[0] + " " + dist[1] + " " + dist[2]); return cmn.sentiment.get((int) score); } catch (Exception e) { System.out.println("Blas klasyfikacji single Bayes"); } return null; } public List<Integer> classifyFromCsv(File file, Common cmn) { Instances instances = cmn.getPrepapredSet(file); try { cls = (Classifier) weka.core.SerializationHelper.read("Bayes.model"); int errAll = 0, errPosNeu = 0, errPosNeg = 0, errNegPos = 0, errNegNeu = 0, errNeuPos = 0, errNeuNeg = 0, i = 0; List<Integer> errors = new ArrayList<Integer>(); long start = System.currentTimeMillis(); for (Instance instance : instances) { i++; double score = cls.classifyInstance(instance); double shouldBe = instance.value(instances.attribute("Sentiment")); if (shouldBe != score) { errAll++; if (shouldBe == 0.0 && score == 2.0) errPosNeu++; else if (shouldBe == 0.0 && score == 1.0) errPosNeg++; else if (shouldBe == 1.0 && score == 0.0) errNegPos++; else if (shouldBe == 1.0 && score == 2.0) errNegNeu++; else if (shouldBe == 2.0 && score == 0.0) errNeuPos++; else if (shouldBe == 2.0 && score == 1.0) errNeuNeg++; } //System.out.println("==== Bayes ===="); //double dist[] = cls.distributionForInstance(instance); //System.out.print(i + ": "); //cmn.printDetailedResults(instance.value(instances.attribute("Sentiment")), dist, score); //System.out.println(); } long end = System.currentTimeMillis() - start; System.out.println("Czas wykonywania [ms]: " + end); errors.add(errAll); errors.add(errPosNeu); errors.add(errPosNeg); errors.add(errNegPos); errors.add(errNegNeu); errors.add(errNeuPos); errors.add(errNeuNeg); return errors; } catch (Exception e) { System.out.println("Blad klasyfikacji CSV Bayes"); } return null; } }