Java tutorial
/* * The Gemma project * * Copyright (c) 2011 University of British Columbia * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. */ package ubic.gemma.core.analysis.preprocess.batcheffects; import cern.colt.list.DoubleArrayList; import cern.colt.matrix.DoubleMatrix1D; import cern.colt.matrix.DoubleMatrix2D; import cern.colt.matrix.impl.DenseDoubleMatrix1D; import cern.colt.matrix.impl.DenseDoubleMatrix2D; import cern.colt.matrix.linalg.Algebra; import cern.jet.math.Functions; import cern.jet.random.Gamma; import cern.jet.random.Normal; import cern.jet.random.engine.MersenneTwister; import org.apache.commons.lang3.time.StopWatch; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartUtilities; import org.jfree.chart.JFreeChart; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.renderer.xy.XYItemRenderer; import org.jfree.data.xy.XYSeries; import org.jfree.data.xy.XYSeriesCollection; import ubic.basecode.dataStructure.matrix.DoubleMatrix; import ubic.basecode.dataStructure.matrix.MatrixUtil; import ubic.basecode.dataStructure.matrix.ObjectMatrix; import ubic.basecode.dataStructure.matrix.ObjectMatrixImpl; import ubic.basecode.math.DescriptiveWithMissing; import ubic.basecode.math.distribution.Histogram; import ubic.basecode.math.linearmodels.DesignMatrix; import ubic.basecode.math.linearmodels.LeastSquaresFit; import java.awt.*; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /** * An implementation of the <a href="http://jlab.byu.edu/ComBat/Download.html">ComBat algorithm described by Johson et al</a> * as described in: * <p> * Johnson, WE, Rabinovic, A, and Li, C (2007). Adjusting batch effects in microarray expression data using Empirical * Bayes methods. Biostatistics 8(1):118-127. * </p> */ @SuppressWarnings({ "unused", "WeakerAccess" }) // Possible external use public class ComBat<R, C> { private static final String BATCH_COLUMN_NAME = "batch"; private static final Log log = LogFactory.getLog(ComBat.class); private final ObjectMatrix<C, String, ?> sampleInfo; private final DoubleMatrix<R, C> data; private boolean hasMissing = false; private int numSamples; private int numBatches; private int numProbes; private LinkedHashMap<String, Collection<C>> batches; private Map<String, Map<C, Integer>> originalLocationsInMatrix; private Algebra solver; private DoubleMatrix2D varpooled; private DoubleMatrix2D standMean; private DoubleMatrix2D gammaHat = null; private DoubleArrayList gammaBar = null; private DoubleArrayList aPrior = null; private DoubleArrayList bPrior = null; private DoubleArrayList t2 = null; /** * Prior distribution */ private DoubleMatrix2D deltaHat = null; /** * The data matrix */ private DoubleMatrix2D y; /** * The design matrix */ private DoubleMatrix2D x; public ComBat(DoubleMatrix<R, C> data, ObjectMatrix<C, String, ?> sampleInfo) { if (data.columns() < 4) { throw new IllegalArgumentException("Cannot run ComBat with fewer than 4 samples"); } this.data = data; this.sampleInfo = sampleInfo; solver = new Algebra(); y = new DenseDoubleMatrix2D(data.asArray()); this.initPartA(); // DesignMatrix dm = new DesignMatrix( sampleInfo ); // this.x = dm.getMatrix(); x = this.computeDesignMatrix(); } public DoubleMatrix2D getDesignMatrix() { return this.x; } /** * Make diagnostic plots. * FIXME: As in the original ComBat, this only graphs the first batch's statistics. In principle we can (and perhaps * should) examine these plots for all the batches. * * @param filePrefix file prefix */ public void plot(String filePrefix) { if (this.gammaHat == null) throw new IllegalArgumentException("You must call 'run' first"); /* * View the distribution of gammaHat, which we assume will have a normal distribution */ DoubleMatrix1D ghr = gammaHat.viewRow(0); int NUM_HIST_BINS = 100; Histogram gammaHatHist = new Histogram("GammaHat", NUM_HIST_BINS, ghr); XYSeries ghplot = gammaHatHist.plot(); Normal rn = new Normal(this.gammaBar.get(0), Math.sqrt(this.t2.get(0)), new MersenneTwister()); Histogram ghtheoryT = new Histogram("Gamma", NUM_HIST_BINS, gammaHatHist.min(), gammaHatHist.max()); for (int i = 0; i < 10000; i++) { double n = rn.nextDouble(); ghtheoryT.fill(n); } XYSeries ghtheory = ghtheoryT.plot(); File tmpfile; try { tmpfile = File.createTempFile(filePrefix + ".gammahat.histogram.", ".png"); ComBat.log.info(tmpfile); } catch (IOException e) { throw new RuntimeException(e); } try (OutputStream os = new FileOutputStream(tmpfile)) { this.writePlot(os, ghplot, ghtheory); /* * View the distribution of deltaHat, which we assume has an inverse gamma distribution */ DoubleMatrix1D dhr = deltaHat.viewRow(0); Histogram deltaHatHist = new Histogram("DeltaHat", NUM_HIST_BINS, dhr); XYSeries dhplot = deltaHatHist.plot(); Gamma g = new Gamma(aPrior.get(0), bPrior.get(0), new MersenneTwister()); Histogram deltaHatT = new Histogram("Delta", NUM_HIST_BINS, deltaHatHist.min(), deltaHatHist.max()); for (int i = 0; i < 10000; i++) { double invg = 1.0 / g.nextDouble(); deltaHatT.fill(invg); } XYSeries dhtheory = deltaHatT.plot(); tmpfile = File.createTempFile(filePrefix + ".deltahat.histogram.", ".png"); ComBat.log.info(tmpfile); try (OutputStream os2 = new FileOutputStream(tmpfile)) { this.writePlot(os2, dhplot, dhtheory); } } catch (IOException e) { throw new RuntimeException(e); } } /** * @return data corrected using parametric prior estimator * @throws ComBatException combat problems */ public DoubleMatrix2D run() throws ComBatException { return this.run(true); } /** * @param parametric if false, use the non-parametric (slower) method for estimating the priors. * @return corrected data * @throws ComBatException combat problems */ public DoubleMatrix2D run(boolean parametric) throws ComBatException { StopWatch timer = new StopWatch(); timer.start(); final DoubleMatrix2D sdata = this.standardize(y, x); this.checkForProblems(sdata); if (timer.getTime() > 1000) { ComBat.log.info("Standardized"); } timer.reset(); timer.start(); this.gammaHat(sdata); this.deltaHat(sdata); // assertEquals( 1.618, deltaHat.get( 0, 0 ), 0.001 ); // gamma.bar <- apply(gamma.hat, 1, mean) gammaBar = new DoubleArrayList(); t2 = new DoubleArrayList(); for (int batchIndex = 0; batchIndex < gammaHat.rows(); batchIndex++) { double mean = DescriptiveWithMissing.mean(new DoubleArrayList(gammaHat.viewRow(batchIndex).toArray())); gammaBar.add(mean); t2.add(DescriptiveWithMissing .sampleVariance(new DoubleArrayList(gammaHat.viewRow(batchIndex).toArray()), mean)); } // assertEquals( -0.092144, gammaBar.get( 0 ), 0.001 ); // assertEquals( 0.2977, t2.get( 1 ), 0.001 ); aPrior = this.aPrior(deltaHat); bPrior = this.bPrior(deltaHat); if (timer.getTime() > 1000) { ComBat.log.info("Computed priors"); } // assertEquals( 17.4971, aPrior.get( 0 ), 0.0001 ); // assertEquals( 4.514, bPrior.get( 1 ), 0.0001 ); DoubleMatrix2D gammastar = new DenseDoubleMatrix2D(numBatches, numProbes); DoubleMatrix2D deltastar = new DenseDoubleMatrix2D(numBatches, numProbes); if (!parametric) { this.runNonParametric(sdata, gammastar, deltastar); } else { this.runParametric(sdata, gammastar, deltastar); } DoubleMatrix2D adjustedData = this.rawAdjust(sdata, gammastar, deltastar); // assertEquals( -0.95099, adjustedData.get( 18, 0 ), 0.0001 ); // assertEquals( -0.30273984, adjustedData.get( 14, 6 ), 0.0001 ); // assertEquals( 0.2097977, adjustedData.get( 7, 3 ), 0.0001 ); // log.info( adjustedData ); DoubleMatrix2D result = this.restoreScale(adjustedData); if (timer.getTime() > 1000) { ComBat.log.info("Done"); } return result; } /** * Special standardization: partial regression of covariates * * @param b b * @param A A * @return double matrix 2d */ DoubleMatrix2D standardize(DoubleMatrix2D b, DoubleMatrix2D A) { DoubleMatrix2D beta = new LeastSquaresFit(A, b).getCoefficients(); // assertEquals( 3.7805, beta.get( 0, 0 ), 0.001 ); // assertEquals( 0.0541, beta.get( 2, 18 ), 0.001 ); int batchIndex = 0; DoubleMatrix2D bba = new DenseDoubleMatrix2D(1, numBatches); for (String batchId : batches.keySet()) { bba.set(0, batchIndex++, (double) batches.get(batchId).size() / numSamples); } /* * Weight the non-batch coefficients by the batch sizes. */ DoubleMatrix2D grandMeanM = solver.mult(bba, beta.viewPart(0, 0, numBatches, beta.columns())); // assertEquals( 5.8134, grandMeanM.get( 0, 1 ), 0.001 ); if (hasMissing) { varpooled = y.copy().assign(solver.transpose(solver.mult(x, beta)), Functions.minus); DoubleMatrix2D var = new DenseDoubleMatrix2D(varpooled.rows(), 1); for (int i = 0; i < varpooled.rows(); i++) { DoubleMatrix1D row = varpooled.viewRow(i); double m = DescriptiveWithMissing.mean(new DoubleArrayList(row.toArray())); double v = DescriptiveWithMissing.sampleVariance(new DoubleArrayList(row.toArray()), m); var.set(i, 0, v); } varpooled = var; } else { varpooled = y.copy().assign(solver.transpose(solver.mult(x, beta)), Functions.minus) .assign(Functions.pow(2)); DoubleMatrix2D scale = new DenseDoubleMatrix2D(numSamples, 1); scale.assign(1.0 / numSamples); varpooled = solver.mult(varpooled, scale); } DoubleMatrix2D size = new DenseDoubleMatrix2D(numSamples, 1); size.assign(1.0); /* * The coefficients repeated for each sample. */ standMean = solver.mult(solver.transpose(grandMeanM), solver.transpose(size)); /* * Erase the batch factors from a copy of the design matrix */ DoubleMatrix2D tmpX = x.copy(); for (batchIndex = 0; batchIndex < numBatches; batchIndex++) { for (int j = 0; j < x.rows(); j++) { tmpX.set(j, batchIndex, 0.0); } } /* * row means, adjusted "per group", and ignoring batch effects. */ standMean = standMean.assign(solver.transpose(solver.mult(tmpX, beta)), Functions.plus); DoubleMatrix2D varsq = solver.mult(varpooled.copy().assign(Functions.sqrt), solver.transpose(size)); /* * Subtract the mean and divide by the standard deviations. */ DoubleMatrix2D meansubtracted = y.copy().assign(standMean, Functions.minus); return meansubtracted.assign(varsq, Functions.div); } private void writePlot(OutputStream os, XYSeries empirical, XYSeries theory) { // ChartFactory.setChartTheme( StandardChartTheme.createLegacyTheme() ); XYSeriesCollection xySeriesCollection = new XYSeriesCollection(); xySeriesCollection.addSeries(empirical); xySeriesCollection.addSeries(theory); JFreeChart chart = ChartFactory.createXYLineChart("", "Magnitude", "Density", xySeriesCollection, PlotOrientation.VERTICAL, false, false, false); chart.getXYPlot().setRangeGridlinesVisible(false); chart.getXYPlot().setDomainGridlinesVisible(false); XYItemRenderer renderer = chart.getXYPlot().getRenderer(); renderer.setBasePaint(Color.white); try { int size = 500; ChartUtilities.writeChartAsPNG(os, chart, 500, size); os.close(); } catch (IOException e) { throw new RuntimeException(e); } } private void runParametric(final DoubleMatrix2D sdata, DoubleMatrix2D gammastar, DoubleMatrix2D deltastar) { int batchIndex = 0; for (String batchId : batches.keySet()) { DoubleMatrix2D batchData = this.getBatchData(sdata, batchId); DoubleMatrix1D[] batchResults; batchResults = this.itSol(batchData, gammaHat.viewRow(batchIndex), deltaHat.viewRow(batchIndex), gammaBar.get(batchIndex), t2.get(batchIndex), aPrior.get(batchIndex), bPrior.get(batchIndex)); for (int j = 0; j < batchResults[0].size(); j++) { gammastar.set(batchIndex, j, batchResults[0].get(j)); } for (int j = 0; j < batchResults[1].size(); j++) { deltastar.set(batchIndex, j, batchResults[1].get(j)); } batchIndex++; } } private void runNonParametric(final DoubleMatrix2D sdata, DoubleMatrix2D gammastar, DoubleMatrix2D deltastar) { final ConcurrentHashMap<String, DoubleMatrix1D[]> results = new ConcurrentHashMap<>(); int numThreads = Math.min(batches.size(), Runtime.getRuntime().availableProcessors()); ComBat.log.info("Runing nonparametric estimation on " + numThreads + " threads"); Future<?>[] futures = new Future[numThreads]; ExecutorService service = Executors.newCachedThreadPool(); /* * Divvy up batches over threads. */ int batchesPerThread = batches.size() / numThreads; final String[] batchIds = batches.keySet().toArray(new String[] {}); for (int i = 0; i < numThreads; i++) { final int firstBatch = i * batchesPerThread; final int lastBatch = i == (numThreads - 1) ? batches.size() : firstBatch + batchesPerThread; futures[i] = service.submit(new Runnable() { @Override public void run() { for (int k = firstBatch; k < lastBatch; k++) { String batchId = batchIds[k]; DoubleMatrix2D batchData = ComBat.this.getBatchData(sdata, batchId); DoubleMatrix1D[] batchResults = ComBat.this.nonParametricFit(batchData, gammaHat.viewRow(k), deltaHat.viewRow(k)); results.put(batchId, batchResults); } } }); } service.shutdown(); boolean allDone = false; do { for (Future<?> f : futures) { allDone = true; if (!f.isDone() && !f.isCancelled()) { allDone = false; break; } } } while (!allDone); for (int i = 0; i < batchIds.length; i++) { String batchId = batchIds[i]; DoubleMatrix1D[] batchResults = results.get(batchId); for (int j = 0; j < batchResults[0].size(); j++) { gammastar.set(i, j, batchResults[0].get(j)); } for (int j = 0; j < batchResults[1].size(); j++) { deltastar.set(i, j, batchResults[1].get(j)); } } } private DoubleArrayList aPrior(DoubleMatrix2D d) { DoubleArrayList result = new DoubleArrayList(); for (int i = 0; i < d.rows(); i++) { DoubleArrayList dd = new DoubleArrayList(d.viewRow(i).toArray()); double mean = DescriptiveWithMissing.mean(dd); double var = DescriptiveWithMissing.sampleVariance(dd, mean); result.add((2.0 * var + Math.pow(mean, 2)) / var); } return result; } private DoubleArrayList bPrior(DoubleMatrix2D d) { DoubleArrayList result = new DoubleArrayList(); for (int i = 0; i < d.rows(); i++) { DoubleArrayList dd = new DoubleArrayList(d.viewRow(i).toArray()); double mean = DescriptiveWithMissing.mean(dd); double var = DescriptiveWithMissing.sampleVariance(dd, mean); result.add((mean * var + Math.pow(mean, 3)) / var); } return result; } /** * Check sdata for problems. If the design is not of full rank, we get NaN in standardized data. * * @param sdata sdata * @throws ComBatException combat problem */ private void checkForProblems(DoubleMatrix2D sdata) throws ComBatException { int numMissing = 0; int total = 0; for (int i = 0; i < sdata.rows(); i++) { DoubleMatrix1D row = sdata.viewRow(i); for (int j = 0; j < sdata.columns(); j++) { if (Double.isNaN(row.getQuick(j))) { numMissing++; } total++; } } if (total == numMissing) { /* * Alternative that can help in some cases: back out and drop factors. There are definitely strategies for * doing this (drop factors that have no major PC loadings, for example), but it might be bad to do this * "automagically". */ throw new ComBatException("Could not complete batch correction: model must not be of full rank."); } } /** * ComBat parameterizes the model without an intercept, instead using all possible columns for batch (what the heck * do you call this parameterization?) This is important. Each batch has its own parameter. * * @return double matrix 2d */ private DoubleMatrix2D computeDesignMatrix() { DoubleMatrix2D design; /* * Find the batch */ DesignMatrix d = null; int batchFactorColumnIndex = sampleInfo.getColIndexByName(ComBat.BATCH_COLUMN_NAME); Object[] batchFactor = sampleInfo.getColumn(batchFactorColumnIndex); if (batchFactor != null) { d = new DesignMatrix(batchFactor, 1, ComBat.BATCH_COLUMN_NAME); } if (d == null) { throw new IllegalStateException("No batch factor was found"); } ObjectMatrix<String, String, Object> sampleInfoWithoutBatchFactor = this .getSampleInfoWithoutBatchFactor(batchFactorColumnIndex); d.add(sampleInfoWithoutBatchFactor); design = d.getDoubleMatrix(); return design; } private void gammaHat(DoubleMatrix2D sdata) { DoubleMatrix2D Xb = x.viewPart(0, 0, x.rows(), numBatches); gammaHat = new LeastSquaresFit(Xb, sdata).getCoefficients(); } /** * @param sdata data to be sliced * @param batchId which batch */ private DoubleMatrix2D getBatchData(DoubleMatrix2D sdata, String batchId) { Collection<C> sampleNames = batches.get(batchId); DoubleMatrix2D result = new DenseDoubleMatrix2D(sdata.rows(), sampleNames.size()); int i = 0; for (C sname : sampleNames) { DoubleMatrix1D colInBatch = sdata.viewColumn(data.getColIndexByName(sname)); for (int k = 0; k < colInBatch.size(); k++) { result.set(k, i, colInBatch.get(k)); } i++; } // log.info( result ); return result; } private DoubleMatrix2D getBatchDesign(String batchId) { Collection<C> sampleNames = batches.get(batchId); DoubleMatrix2D result = new DenseDoubleMatrix2D(sampleNames.size(), batches.keySet().size()); for (int j = 0; j < batches.keySet().size(); j++) { int i = 0; for (C sname : sampleNames) { DoubleMatrix1D rowInBatch = x.viewRow(data.getColIndexByName(sname)); result.set(i, j, rowInBatch.get(j)); i++; } } // log.info( result ); return result; } private ObjectMatrix<String, String, Object> getSampleInfoWithoutBatchFactor(int batchFactorColumnIndex) { ObjectMatrix<String, String, Object> sampleInfoWithoutBatchFactor = new ObjectMatrixImpl<>( sampleInfo.rows(), sampleInfo.columns() - 1); int r = 0; for (int i = 0; i < sampleInfo.rows(); i++) { int c = 0; for (int j = 0; j < sampleInfo.columns(); j++) { if (j == batchFactorColumnIndex) continue; if (i == 0) { sampleInfoWithoutBatchFactor.addColumnName(sampleInfo.getColName(j)); } sampleInfoWithoutBatchFactor.set(r, c++, sampleInfo.get(i, j)); } r++; } return sampleInfoWithoutBatchFactor; } private void initPartA() { numSamples = sampleInfo.rows(); /* * TODO: remove rows that have too many missing values, or do that earlier. */ for (int i = 0; i < data.rows(); i++) { for (int j = 0; j < data.columns(); j++) { if (data.isMissing(i, j)) { this.hasMissing = true; break; } } } int batchColumnIndex = sampleInfo.getColIndexByName(ComBat.BATCH_COLUMN_NAME); batches = new LinkedHashMap<>(); originalLocationsInMatrix = new HashMap<>(); for (int i = 0; i < numSamples; i++) { C sampleName = sampleInfo.getRowName(i); String batchId = (String) sampleInfo.get(i, batchColumnIndex); if (!batches.containsKey(batchId)) { batches.put(batchId, new ArrayList<C>()); originalLocationsInMatrix.put(batchId, new LinkedHashMap<C, Integer>()); } batches.get(batchId).add(sampleName); originalLocationsInMatrix.get(batchId).put(sampleName, i); } /* * Make sure all batches have at least 2 samples, or else this won't work. */ for (String batchId : batches.keySet()) { if (batches.get(batchId).size() < 2) { throw new IllegalArgumentException( "Batch correction not possible with less than 2 samples in any batch. Consider combining batches."); } } numBatches = batches.keySet().size(); numProbes = y.rows(); } private DoubleMatrix1D[] itSol(DoubleMatrix2D matrix, DoubleMatrix1D gHat, DoubleMatrix1D dHat, double gbar, double t2b, double a, double b) throws ComBatException { DoubleMatrix1D n = this.rowNonMissingCounts(matrix); DoubleMatrix1D gold = gHat; DoubleMatrix1D dold = dHat; final double conv = 0.0001; double change = 1.0; int count = 0; int MAXITERS = 500; while (change > conv) { DoubleMatrix1D gnew = this.postMean(gHat, gbar, n, dold, t2b); DoubleMatrix1D sum2 = this.stepSum(matrix, gnew); DoubleMatrix1D dnew = this.postVar(sum2, n, a, b); DoubleMatrix1D gnewtmp = gnew.copy().assign(gold, Functions.minus).assign(Functions.abs).assign(gold, Functions.div); DoubleMatrix1D dnewtmp = dnew.copy().assign(dold, Functions.minus).assign(Functions.abs).assign(dold, Functions.div); double gnewmax; double dnewmax; if (hasMissing) { gnewmax = DescriptiveWithMissing.max(new DoubleArrayList(gnewtmp.toArray())); dnewmax = DescriptiveWithMissing.max(new DoubleArrayList(dnewtmp.toArray())); } else { gnewmax = gnewtmp.aggregate(Functions.max, Functions.identity); dnewmax = dnewtmp.aggregate(Functions.max, Functions.identity); } change = Math.max(gnewmax, dnewmax); gold = gnew; dold = dnew; if (count++ > MAXITERS) { /* * For certain data sets, we just flail around; for example if there are only two samples. This is a * bailout for exceptional circumstances. */ throw new ComBatException("Failed to converge within " + MAXITERS + " iterations, last delta was " + String.format("%.2g", change)); } } return new DoubleMatrix1D[] { gold, dold }; } private DoubleMatrix1D[] nonParametricFit(DoubleMatrix2D matrix, DoubleMatrix1D gHat, DoubleMatrix1D dHat) { DoubleMatrix1D gstar = new DenseDoubleMatrix1D(matrix.rows()); DoubleMatrix1D dstar = new DenseDoubleMatrix1D(matrix.rows()); double twopi = 2.0 * Math.PI; StopWatch timer = new StopWatch(); timer.start(); /* * Vectorized schmectorized. In R you end up looping over the data many times. It's slow here too... but not too * horrible. 1000 rows of a 10k probe data set with 10 samples takes about 7.5 seconds on my laptop -- but this * has to be done for each batch. It's O( M*N^2 ) */ int c = 1; for (int i = 0; i < matrix.rows(); i++) { double[] x = MatrixUtil.removeMissing(matrix.viewRow(i)).toArray(); int n = x.length; double no2 = n / 2.0; double sumLH = 0.0; double sumgLH = 0.0; double sumdLH = 0.0; for (int j = 0; j < matrix.rows(); j++) { if (j == i) continue; double g = gHat.getQuick(j); double d = dHat.getQuick(j); // compute the sum of squares of the difference between gHat[j] and the current data row. // this is slower, though it's the "colt api" way. // double sum2 = x.copy().assign( Functions.minus( g ) ).aggregate( Functions.plus, Functions.square ); double sum2 = 0.0; for (double aX : x) { sum2 += Math.pow(aX - g, 2); } double LH = (1.0 / Math.pow(twopi * d, no2)) * Math.exp(-sum2 / (2 * d)); if (Double.isNaN(LH)) continue; double gLH = g * LH; double dLH = d * LH; sumLH += LH; sumgLH += gLH; sumdLH += dLH; } gstar.set(i, sumgLH / sumLH); dstar.set(i, sumdLH / sumLH); if (c++ % 1000 == 0) { ComBat.log.info(i + String.format(" rows done, %.1fs elapsed", timer.getTime() / 1000.00)); } } return new DoubleMatrix1D[] { gstar, dstar }; } private DoubleMatrix1D postMean(DoubleMatrix1D ghat, double gbar, DoubleMatrix1D n, DoubleMatrix1D dstar, double t2b) { DoubleMatrix1D result = new DenseDoubleMatrix1D(ghat.size()); for (int i = 0; i < ghat.size(); i++) { result.set(i, (t2b * n.get(i) * ghat.get(i) + dstar.get(i) * gbar) / (t2b * n.get(i) + dstar.get(i))); } return result; } private DoubleMatrix1D postVar(DoubleMatrix1D sum2, DoubleMatrix1D n, double a, double b) { DoubleMatrix1D result = new DenseDoubleMatrix1D(sum2.size()); for (int i = 0; i < sum2.size(); i++) { result.set(i, (0.5 * sum2.get(i) + b) / (n.get(i) / 2.0 + a - 1.0)); } return result; } private DoubleMatrix2D rawAdjust(DoubleMatrix2D sdata, DoubleMatrix2D gammastar, DoubleMatrix2D deltastar) { int batchIndex; int batchNum = 0; DoubleMatrix2D adjustedData = new DenseDoubleMatrix2D(sdata.rows(), sdata.columns()); for (String batchId : batches.keySet()) { DoubleMatrix2D batchData = this.getBatchData(sdata, batchId); DoubleMatrix2D Xbb = this.getBatchDesign(batchId); DoubleMatrix2D adjustedBatch = batchData.copy().assign(solver.transpose(solver.mult(Xbb, gammastar)), Functions.minus); DoubleMatrix1D deltaStarRow = deltastar.viewRow(batchNum); deltaStarRow.assign(Functions.sqrt); DoubleMatrix1D ones = new DenseDoubleMatrix1D(batchData.columns()); ones.assign(1.0); DoubleMatrix2D divisor = solver.multOuter(deltaStarRow, ones, null); adjustedBatch.assign(divisor, Functions.div); /* * Now we have to put the data back in the right order -- the batches are all together. */ Map<C, Integer> locations = originalLocationsInMatrix.get(batchId); for (batchIndex = 0; batchIndex < adjustedBatch.rows(); batchIndex++) { int j = 0; for (Integer index : locations.values()) { adjustedData.set(batchIndex, index, adjustedBatch.get(batchIndex, j)); j++; } } batchNum++; } return adjustedData; } private DoubleMatrix2D restoreScale(DoubleMatrix2D adjustedData) { DoubleMatrix2D ones = new DenseDoubleMatrix2D(1, numSamples); ones.assign(1.0); DoubleMatrix2D adj = solver.mult(varpooled.copy().assign(Functions.sqrt), ones); DoubleMatrix2D varRestore = adjustedData.assign(adj, Functions.mult); // log.info( varRestore ); return varRestore.assign(standMean, Functions.plus); } private DoubleMatrix1D rowNonMissingCounts(DoubleMatrix2D matrix) { DoubleMatrix1D result = new DenseDoubleMatrix1D(matrix.rows()); for (int i = 0; i < matrix.rows(); i++) { result.set(i, DescriptiveWithMissing .sizeWithoutMissingValues(new DoubleArrayList(matrix.viewRow(i).toArray()))); } return result; } private DoubleMatrix1D stepSum(DoubleMatrix2D matrix, DoubleMatrix1D gnew) { Algebra s = new Algebra(); DoubleMatrix2D g = new DenseDoubleMatrix2D(1, gnew.size()); for (int i = 0; i < gnew.size(); i++) { g.set(0, i, gnew.get(i)); } DoubleMatrix2D a = new DenseDoubleMatrix2D(1, matrix.columns()); a.assign(1.0); /* * subtract column gnew from each column of data; square; then sum over each row. */ DoubleMatrix2D deltas = matrix.copy().assign((s.mult(s.transpose(g), a)), Functions.minus) .assign(Functions.square); DoubleMatrix1D sumsq = new DenseDoubleMatrix1D(deltas.rows()); sumsq.assign(0.0); for (int i = 0; i < deltas.rows(); i++) { sumsq.set(i, DescriptiveWithMissing.sum(new DoubleArrayList(deltas.viewRow(i).toArray()))); } return sumsq; } private void deltaHat(DoubleMatrix2D sdata) { int batchIndex; deltaHat = new DenseDoubleMatrix2D(numBatches, numProbes); batchIndex = 0; for (String batchId : batches.keySet()) { DoubleMatrix2D batchData = this.getBatchData(sdata, batchId); for (int j = 0; j < batchData.rows(); j++) { DoubleArrayList row = new DoubleArrayList(batchData.viewRow(j).toArray()); double variance = DescriptiveWithMissing.sampleVariance(row, DescriptiveWithMissing.mean(row)); deltaHat.set(batchIndex, j, variance); } batchIndex++; } } }