Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package tubesduaai; import java.io.BufferedReader; import java.io.FileReader; import java.io.Serializable; import java.util.Random; import java.util.Scanner; import weka.classifiers.Evaluation; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; /** * * @author Nugroho Satriyanto <massatriya@gmail.com> */ public class TesFFNN { public static Instances data; public static Evaluation eval; public static Scanner sc = new Scanner(System.in); public static Evaluation cross_validation(FFNN x) throws Exception { eval = new Evaluation(data); eval.crossValidateModel(x, data, 10, new Random(1)); return eval; } public static void tes() throws Exception { BufferedReader reader = new BufferedReader(new FileReader("C:\\Program Files\\Weka-3-8\\data\\iris.arff")); data = new Instances(reader); reader.close(); // setting class attribute data.setClassIndex(data.numAttributes() - 1); Instances dummy = null; FFNN nn = new FFNN("C:\\Program Files\\Weka-3-8\\data\\iris.arff", 0); boolean[] nom = nn.cek_nominal(); System.out.println("ingin load?: "); String load = sc.nextLine(); if (load.equalsIgnoreCase("y")) { nn.load_model(); eval = cross_validation(nn); nn.print_perceptron(); } else { nn.buildClassifier(data); nn.print_perceptron(); eval = cross_validation(nn); nn.print_perceptron(); } System.out.println(eval.toSummaryString("\nResults\n======\n", false)); double[] attValues1 = { 5.1, 3.5, 1.4, 0.2 }; Instance i1 = new DenseInstance(1.0, attValues1); double[] attValues2 = { 7.0, 3.2, 4.7, 1.4 }; Instance i2 = new DenseInstance(1.0, attValues2); double[] attValues3 = { 6.3, 3.3, 6.0, 2.5 }; Instance i3 = new DenseInstance(1.0, attValues3); i1.setDataset(data); i2.setDataset(data); i3.setDataset(data); //hasil harusnya 0 1 2 System.out.println(nn.classifyInstance(i1)); System.out.println(nn.classifyInstance(i2)); System.out.println(nn.classifyInstance(i3)); System.out.println("ingin save?: "); String save = sc.nextLine(); if (save.equalsIgnoreCase("y")) { nn.save_model(); } } public static void main(String[] args) { try { tes(); } catch (Exception e) { System.out.println(e.toString()); } } }