Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /** * This is a "hack" class. It's just to help me test out some ideas. * I'm running out of time for this conference and I'm really trying * to put together something stunning in terms of performance. * * @author Waleed Kadous * @version $Id: ExpAB_TC2.java,v 1.1.1.1 2002/06/28 07:36:16 waleed Exp $ */ package tclass; import tclass.util.Debug; import weka.classifiers.meta.AdaBoostM1; import weka.classifiers.trees.J48; import weka.core.Instance; import weka.core.Instances; class ABClassifier { AdaBoostM1 dt; String name = "AdaBoost"; String description = "AdaBoost Classifier"; public ABClassifier(AdaBoostM1 dt) { this.dt = dt; } public String getName() { return name; } public String getDescription() { return description; } public void classify(Instance inst, ClassificationI classn) throws Exception { double bestClass = dt.classifyInstance(inst); classn.setPredictedClass((int) bestClass); classn.setPredictedClassConfidence(1); } } public class ExpAB_TC2 { // Ok. What we are going to do is to separate the learning task in // an interesting way. // First of all, though, the standard stuff String domDescFile = "sl.tdd"; String trainDataFile = "sl.tsl"; String testDataFile = "sl.ttl"; // String globalDesc = "test._gc"; // String evExtractDesc = "test._ee"; String evClusterDesc = "test._ec"; String settingsFile = "test.tal"; String numDivs = "5"; void parseArgs(String[] args) { for (int i = 0; i < args.length; i++) { if (args[i].equals("-tr")) { trainDataFile = args[++i]; } if (args[i].equals("-te")) { testDataFile = args[++i]; } if (args[i].equals("-nd")) { numDivs = args[++i]; } if (args[i].equals("-settings")) { settingsFile = args[++i]; } } } public static void main(String[] args) throws Exception { Debug.setDebugLevel(Debug.PROGRESS); ExpAB_TC2 thisExp = new ExpAB_TC2(); thisExp.parseArgs(args); DomDesc domDesc = new DomDesc(thisExp.domDescFile); ClassStreamVecI trainStreamData = new ClassStreamVec(thisExp.trainDataFile, domDesc); ClassStreamVecI testStreamData = new ClassStreamVec(thisExp.testDataFile, domDesc); Debug.dp(Debug.PROGRESS, "PROGRESS: Data read in"); Settings settings = new Settings(thisExp.settingsFile, domDesc); EventExtractor evExtractor = settings.getEventExtractor(); // Global data is likely to be included in every model; so we // might as well calculated now GlobalCalc globalCalc = settings.getGlobalCalc(); ClassStreamAttValVecI trainGlobalData = globalCalc.applyGlobals(trainStreamData); ClassStreamAttValVecI testGlobalData = globalCalc.applyGlobals(testStreamData); // And we might as well extract the events. Debug.dp(Debug.PROGRESS, "PROGRESS: Globals calculated."); Debug.dp(Debug.PROGRESS, "Train: " + trainGlobalData.size() + " Test: " + testGlobalData.size()); ClassStreamEventsVecI trainEventData = evExtractor.extractEvents(trainStreamData); ClassStreamEventsVecI testEventData = evExtractor.extractEvents(testStreamData); Debug.dp(Debug.PROGRESS, "PROGRESS: Events extracted"); // System.out.println(trainEventData.toString()); // Now we want the clustering algorithms only to cluster // instances of each class. Make an array of clusterers, // one per class. int numTestStreams = testEventData.size(); int numClasses = domDesc.getClassDescVec().size(); EventDescVecI eventDescVec = evExtractor.getDescription(); EventClusterer[] eventClusterers = new EventClusterer[numClasses]; // And now, initialise. for (int i = 0; i < numClasses; i++) { // The new way: eventClusterers[i] = settings.getEventClusterer(); // The old way: // eventClusterers[i] = new EventClusterer(new // StreamTokenizer( // new FileReader(thisExp.evClusterDesc)), // domDesc, // eventDescVec); // System.out.println(eventClusterers[i]); } // Segment the data. ClassStreamEventsVec[] trainStreamsByClass = new ClassStreamEventsVec[numClasses]; for (int i = 0; i < numClasses; i++) { trainStreamsByClass[i] = new ClassStreamEventsVec(); trainStreamsByClass[i].setClassVec(new ClassificationVec()); trainStreamsByClass[i].setStreamEventsVec(new StreamEventsVec()); } Debug.dp(Debug.PROGRESS, "PROGRESS: Data rearranged."); //And now load it up. StreamEventsVecI trainEventSEV = trainEventData.getStreamEventsVec(); ClassificationVecI trainEventCV = trainEventData.getClassVec(); int numTrainStreams = trainEventCV.size(); for (int i = 0; i < numTrainStreams; i++) { int currentClass = trainEventCV.elAt(i).getRealClass(); trainStreamsByClass[currentClass].add(trainEventSEV.elAt(i), trainEventCV.elAt(i)); } ClusterVecI[] clustersByClass = new ClusterVecI[numClasses]; for (int i = 0; i < numClasses; i++) { clustersByClass[i] = eventClusterers[i].clusterEvents(trainStreamsByClass[i]); Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering of " + i + " complete"); Debug.dp(Debug.PROGRESS, "Clusters for class: " + domDesc.getClassDescVec().getClassLabel(i) + " are:"); Debug.dp(Debug.PROGRESS, eventClusterers[i].getMapping()); } Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete. "); // But wait! There's more! There is always more. // The first thing was only useful for clustering. // Now attribution. We want to attribute all the data. So we are going // to have one dataset for each learner. // First set up the attributors. Attributor[] attribsByClass = new Attributor[numClasses]; for (int i = 0; i < numClasses; i++) { attribsByClass[i] = new Attributor(domDesc, clustersByClass[i], eventClusterers[i].getDescription()); Debug.dp(Debug.PROGRESS, "PROGRESS: AttributorMkr of " + i + " complete."); } ClassStreamAttValVecI[] trainEventAtts = new ClassStreamAttValVec[numClasses]; ClassStreamAttValVecI[] testEventAtts = new ClassStreamAttValVec[numClasses]; for (int i = 0; i < numClasses; i++) { trainEventAtts[i] = attribsByClass[i].attribute(trainStreamData, trainEventData); testEventAtts[i] = attribsByClass[i].attribute(testStreamData, testEventData); Debug.dp(Debug.PROGRESS, "PROGRESS: Attribution of " + i + " complete."); } Debug.dp(Debug.PROGRESS, "PROGRESS: Attribution complete."); // Combine all data sources. For now, globals go in every // one. Combiner c = new Combiner(); ClassStreamAttValVecI[] trainAttsByClass = new ClassStreamAttValVec[numClasses]; ClassStreamAttValVecI[] testAttsByClass = new ClassStreamAttValVec[numClasses]; for (int i = 0; i < numClasses; i++) { trainAttsByClass[i] = c.combine(trainGlobalData, trainEventAtts[i]); testAttsByClass[i] = c.combine(testGlobalData, testEventAtts[i]); } // Now we have to do some garbage collection. trainStreamData = null; testStreamData = null; eventClusterers = null; trainEventSEV = null; trainEventCV = null; clustersByClass = null; attribsByClass = null; System.gc(); // So now we have the raw data in the correct form for each // attributor. // And now, we can construct a learner for each case. // Well, for now, I'm going to do something completely crazy. // Let's run each classifier nonetheless over the whole data // ... and see what the hell happens. Maybe some voting scheme // is possible!! This is a strange form of ensemble // classifier. // Each naive bayes algorithm only gets one Debug.setDebugLevel(Debug.PROGRESS); AdaBoostM1[] dtLearners = new AdaBoostM1[numClasses]; for (int i = 0; i < numClasses; i++) { dtLearners[i] = new AdaBoostM1(); dtLearners[i].setClassifier(new J48()); Debug.dp(Debug.PROGRESS, "PROGRESS: Beginning format conversion for class " + i); Instances data = WekaBridge.makeInstances(trainAttsByClass[i], "Train " + i); Debug.dp(Debug.PROGRESS, "PROGRESS: Conversion complete. Starting learning"); dtLearners[i].buildClassifier(data); Debug.dp(Debug.PROGRESS, "Learnt tree: \n" + dtLearners[i].toString()); } ABClassifier[] dtClassifiers = new ABClassifier[numClasses]; for (int i = 0; i < numClasses; i++) { dtClassifiers[i] = new ABClassifier(dtLearners[i]); // System.out.println(nbClassifiers[i].toString()); } Debug.dp(Debug.PROGRESS, "PROGRESS: Learning complete. "); // Now test on training data (each one) /* for(int i=0; i < numClasses; i++){ String className = domDesc.getClassDescVec().getClassLabel(i); ClassificationVecI classvi = (ClassificationVecI) trainAttsByClass[i].getClassVec().clone(); StreamAttValVecI savvi = trainAttsByClass[i].getStreamAttValVec(); for(int j=0; j < trainAttsByClass[i].size(); j++){ nbClassifiers[i].classify(savvi.elAt(j), classvi.elAt(j)); } System.out.println(">>> Learner for class " + className); int numCorrect = 0; for(int j=0; j < classvi.size(); j++){ System.out.print(classvi.elAt(j).toString()); if(classvi.elAt(j).getRealClass() == classvi.elAt(j).getPredictedClass()){ numCorrect++; } } System.out.println("Train accuracy for " + className + " classifier: " + numCorrect + " of " + numTrainStreams + " (" + numCorrect*100.0/numTrainStreams + "%)"); } */ System.out.println(">>> Testing stage <<<"); // First, print the results of using the straight testers. ClassificationVecI[] classns = new ClassificationVecI[numClasses]; for (int i = 0; i < numClasses; i++) { String className = domDesc.getClassDescVec().getClassLabel(i); classns[i] = (ClassificationVecI) testAttsByClass[i].getClassVec().clone(); StreamAttValVecI savvi = testAttsByClass[i].getStreamAttValVec(); Instances data = WekaBridge.makeInstances(testAttsByClass[i], "Test " + i); for (int j = 0; j < numTestStreams; j++) { dtClassifiers[i].classify(data.instance(j), classns[i].elAt(j)); } System.out.println(">>> Learner for class " + className); int numCorrect = 0; for (int j = 0; j < numTestStreams; j++) { System.out.print(classns[i].elAt(j).toString()); if (classns[i].elAt(j).getRealClass() == classns[i].elAt(j).getPredictedClass()) { numCorrect++; } } System.out.println("Test accuracy for " + className + " classifier: " + numCorrect + " of " + numTestStreams + " (" + numCorrect * 100.0 / numTestStreams + "%)"); } // Now do voting. This is a hack solution. int numCorrect = 0; for (int i = 0; i < numTestStreams; i++) { int[] votes = new int[numClasses]; int realClass = classns[0].elAt(i).getRealClass(); String realClassName = domDesc.getClassDescVec().getClassLabel(realClass); for (int j = 0; j < numClasses; j++) { int thisPrediction = classns[j].elAt(i).getPredictedClass(); // if(thisPrediction == j){ // votes[thisPrediction] += 2; // } //else { votes[thisPrediction]++; //} } int maxIndex = -1; int maxVotes = 0; String voteRes = "[ "; for (int j = 0; j < numClasses; j++) { voteRes += votes[j] + " "; if (votes[j] > maxVotes) { maxIndex = j; maxVotes = votes[j]; } } voteRes += "]"; // Now print the result: String predictedClassName = domDesc.getClassDescVec().getClassLabel(maxIndex); if (maxIndex == realClass) { System.out.println("Class " + realClassName + " CORRECTLY classified with " + maxVotes + " votes. Votes: " + voteRes); numCorrect++; } else { System.out.println("Class " + realClassName + " INCORRECTLY classified as " + predictedClassName + " with " + maxVotes + " votes. Votes: " + voteRes); } } System.out.println("Final voted accuracy: " + numCorrect + " of " + numTestStreams + " (" + numCorrect * 100.0 / numTestStreams + "%)"); } }