Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package personality_prediction; import weka.core.Instances; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.trees.J48; import weka.core.converters.ConverterUtils.DataSource; /** * * @author somya */ public class Evaluation_Result { void eval_result() { try { DataSource source_train = new DataSource( "C:\\Users\\divya\\Desktop\\Personality Mining\\WEKA_DataSet\\Training dataset\\training_data_neur.csv"); Instances train = source_train.getDataSet(); DataSource source_test = new DataSource( "C:\\Users\\divya\\Desktop\\Personality Mining\\WEKA_DataSet\\Testing dataset\\Testing_data_neur.csv"); Instances test = source_test.getDataSet(); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(train.numAttributes() - 1); // train classifier Classifier cls = new J48(); cls.buildClassifier(train); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test); System.out.println(eval.toSummaryString("\nResults\n======\n", false)); } catch (Exception e) { System.out.println(e.getLocalizedMessage()); } } }