Part2.HierarchicalClustererEx.java Source code

Java tutorial

Introduction

Here is the source code for Part2.HierarchicalClustererEx.java

Source

package Part2;

/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * HierarchicalClusterer.java
 * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand
 */

import java.io.Serializable;
import java.text.DecimalFormat;
import java.util.Comparator;
import java.util.Enumeration;
import java.util.PriorityQueue;
import java.util.Vector;

import weka.clusterers.AbstractClusterer;
import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.DistanceFunction;
import weka.core.Drawable;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.Capabilities.Capability;

/**
<!-- globalinfo-start -->
* Hierarchical clustering class.
* Implements a number of classic hierarchical clustering methods.
<!-- globalinfo-end -->
* 
<!-- options-start -->
* Valid options are: <p/>
* 
* <pre> -N
*  number of clusters
* </pre>
* 
* 
* <pre> -L
*  Link type (Single, Complete, Average, Mean, Centroid, Ward, Adjusted complete, Neighbor Joining)
*  [SINGLE|COMPLETE|AVERAGE|MEAN|CENTROID|WARD|ADJCOMLPETE|NEIGHBOR_JOINING]
* </pre>
* 
* <pre> -A
* Distance function to use. (default: weka.core.EuclideanDistance)
* </pre>
*
* <pre> -P
* Print hierarchy in Newick format, which can be used for display in other programs.
* </pre>
*  
* <pre> -D
* If set, classifier is run in debug mode and may output additional info to the console.
* </pre>
* 
* <pre> -B
* \If set, distance is interpreted as branch length, otherwise it is node height.
* </pre>
* 
*<!-- options-end -->
*
* 
* @author Remco Bouckaert (rrb@xm.co.nz, remco@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 6592 $
*/
public class HierarchicalClustererEx extends AbstractClusterer
        implements OptionHandler, CapabilitiesHandler, Drawable {
    private static final long serialVersionUID = 1L;

    /** Whether the classifier is run in debug mode. */
    protected boolean m_bDebug = false;

    /** Whether the distance represent node height (if false) or branch length (if true). */
    protected boolean m_bDistanceIsBranchLength = false;

    /** training data **/
    Instances m_instances;

    public HierarchicalClustererEx(DistanceWithLabel dis) {
        this.m_DistanceFunction = dis;
    }

    /** number of clusters desired in clustering **/
    int m_nNumClusters = 2;

    public void setNumClusters(int nClusters) {
        m_nNumClusters = Math.max(1, nClusters);
    }

    public int getNumClusters() {
        return m_nNumClusters;
    }

    /** distance function used for comparing members of a cluster **/
    public DistanceWithLabel m_DistanceFunction = null;

    public DistanceFunction getDistanceFunction() {
        return m_DistanceFunction;
    }
    // public void setDistanceFunction(DistanceFunction distanceFunction) {m_DistanceFunction = distanceFunction;}

    /** used for priority queue for efficient retrieval of pair of clusters to merge**/
    class Tuple {
        public Tuple(double d, int i, int j, int nSize1, int nSize2) {
            m_fDist = d;
            m_iCluster1 = i;
            m_iCluster2 = j;
            m_nClusterSize1 = nSize1;
            m_nClusterSize2 = nSize2;
        }

        double m_fDist;
        int m_iCluster1;
        int m_iCluster2;
        int m_nClusterSize1;
        int m_nClusterSize2;
    }

    /** comparator used by priority queue**/
    class TupleComparator implements Comparator<Tuple> {
        public int compare(Tuple o1, Tuple o2) {
            if (o1.m_fDist < o2.m_fDist) {
                return -1;
            } else if (o1.m_fDist == o2.m_fDist) {
                return 0;
            }
            return 1;
        }
    }

    /** the various link types */
    final static int SINGLE = 0;
    final static int COMPLETE = 1;
    final static int AVERAGE = 2;
    final static int MEAN = 3;
    final static int CENTROID = 4;
    final static int WARD = 5;
    final static int ADJCOMLPETE = 6;
    final static int NEIGHBOR_JOINING = 7;
    public static final Tag[] TAGS_LINK_TYPE = { new Tag(SINGLE, "SINGLE"), new Tag(COMPLETE, "COMPLETE"),
            new Tag(AVERAGE, "AVERAGE"), new Tag(MEAN, "MEAN"), new Tag(CENTROID, "CENTROID"),
            new Tag(WARD, "WARD"), new Tag(ADJCOMLPETE, "ADJCOMLPETE"),
            new Tag(NEIGHBOR_JOINING, "NEIGHBOR_JOINING") };

    /**
     * Holds the Link type used calculate distance between clusters
     */
    int m_nLinkType = SINGLE;

    boolean m_bPrintNewick = true;;

    public boolean getPrintNewick() {
        return m_bPrintNewick;
    }

    public void setPrintNewick(boolean bPrintNewick) {
        m_bPrintNewick = bPrintNewick;
    }

    public void setLinkType(SelectedTag newLinkType) {

        m_nLinkType = newLinkType.getSelectedTag().getID();

    }

    public SelectedTag getLinkType() {
        return new SelectedTag(m_nLinkType, TAGS_LINK_TYPE);
    }

    /** class representing node in cluster hierarchy **/
    class Node implements Serializable {
        Node m_left;
        Node m_right;
        Node m_parent;
        int m_iLeftInstance;
        int m_iRightInstance;
        double m_fLeftLength = 0;
        double m_fRightLength = 0;
        double m_fHeight = 0;

        public String toString(int attIndex) {
            DecimalFormat myFormatter = new DecimalFormat("#.#####");

            if (m_left == null) {
                if (m_right == null) {
                    return "(" + m_instances.instance(m_iLeftInstance).stringValue(attIndex) + ":"
                            + myFormatter.format(m_fLeftLength) + ","
                            + m_instances.instance(m_iRightInstance).stringValue(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                } else {
                    return "(" + m_instances.instance(m_iLeftInstance).stringValue(attIndex) + ":"
                            + myFormatter.format(m_fLeftLength) + "," + m_right.toString(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                }
            } else {
                if (m_right == null) {
                    return "(" + m_left.toString(attIndex) + ":" + myFormatter.format(m_fLeftLength) + ","
                            + m_instances.instance(m_iRightInstance).stringValue(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                } else {
                    return "(" + m_left.toString(attIndex) + ":" + myFormatter.format(m_fLeftLength) + ","
                            + m_right.toString(attIndex) + ":" + myFormatter.format(m_fRightLength) + ")";
                }
            }
        }

        public String toString2(int attIndex) {
            DecimalFormat myFormatter = new DecimalFormat("#.#####");

            if (m_left == null) {
                if (m_right == null) {
                    return "(" + m_instances.instance(m_iLeftInstance).value(attIndex) + ":"
                            + myFormatter.format(m_fLeftLength) + ","
                            + m_instances.instance(m_iRightInstance).value(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                } else {
                    return "(" + m_instances.instance(m_iLeftInstance).value(attIndex) + ":"
                            + myFormatter.format(m_fLeftLength) + "," + m_right.toString2(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                }
            } else {
                if (m_right == null) {
                    return "(" + m_left.toString2(attIndex) + ":" + myFormatter.format(m_fLeftLength) + ","
                            + m_instances.instance(m_iRightInstance).value(attIndex) + ":"
                            + myFormatter.format(m_fRightLength) + ")";
                } else {
                    return "(" + m_left.toString2(attIndex) + ":" + myFormatter.format(m_fLeftLength) + ","
                            + m_right.toString2(attIndex) + ":" + myFormatter.format(m_fRightLength) + ")";
                }
            }
        }

        void setHeight(double fHeight1, double fHeight2) {
            m_fHeight = fHeight1;
            if (m_left == null) {
                m_fLeftLength = fHeight1;
            } else {
                m_fLeftLength = fHeight1 - m_left.m_fHeight;
            }
            if (m_right == null) {
                m_fRightLength = fHeight2;
            } else {
                m_fRightLength = fHeight2 - m_right.m_fHeight;
            }
        }

        void setLength(double fLength1, double fLength2) {
            m_fLeftLength = fLength1;
            m_fRightLength = fLength2;
            m_fHeight = fLength1;
            if (m_left != null) {
                m_fHeight += m_left.m_fHeight;
            }
        }
    }

    Node[] m_clusters;
    int[] m_nClusterNr;
    public Vector<Integer>[] initClusterID = null;

    public void setInitCluster(Vector<Integer>[] initClusterID) {
        this.initClusterID = initClusterID;
    }

    @Override
    public void buildClusterer(Instances data) throws Exception {
        //      /System.err.println("Method " + m_nLinkType);
        m_instances = data;
        int nInstances = m_instances.numInstances();
        if (nInstances == 0) {
            return;
        }
        m_DistanceFunction.setInstances(m_instances);
        // use array of integer vectors to store cluster indices,
        // starting with one cluster per instance

        //Vector<Integer> [] nClusterID = this.initClusterID;
        //int nClusters = this.initClusterID.length;

        Vector<Integer>[] nClusterID = new Vector[data.numInstances()];
        for (int i = 0; i < data.numInstances(); i++) {
            nClusterID[i] = new Vector<Integer>();
            nClusterID[i].add(i);
        }
        // calculate distance matrix
        int nClusters = data.numInstances();

        // used for keeping track of hierarchy
        Node[] clusterNodes = new Node[nInstances];

        doLinkClustering(nClusters, nClusterID, clusterNodes);

        // move all clusters in m_nClusterID array
        // & collect hierarchy
        int iCurrent = 0;
        m_clusters = new Node[m_nNumClusters];
        m_nClusterNr = new int[nInstances];
        for (int i = 0; i < nInstances; i++) {
            if (nClusterID[i].size() > 0) {
                for (int j = 0; j < nClusterID[i].size(); j++) {
                    m_nClusterNr[nClusterID[i].elementAt(j)] = iCurrent;
                }
                m_clusters[iCurrent] = clusterNodes[i];
                iCurrent++;
            }
        }

    } // buildClusterer

    /** use neighbor joining algorithm for clustering
     * This is roughly based on the RapidNJ simple implementation and runs at O(n^3)
     * More efficient implementations exist, see RapidNJ (or my GPU implementation :-))
     * @param nClusters
     * @param nClusterID
     * @param clusterNodes
     */
    void neighborJoining(int nClusters, Vector<Integer>[] nClusterID, Node[] clusterNodes) {
        int n = m_instances.numInstances();

        double[][] fDist = new double[nClusters][nClusters];
        for (int i = 0; i < nClusters; i++) {
            fDist[i][i] = 0;
            for (int j = i + 1; j < nClusters; j++) {
                fDist[i][j] = getDistance0(nClusterID[i], nClusterID[j]);
                fDist[j][i] = fDist[i][j];
            }
        }

        double[] fSeparationSums = new double[n];
        double[] fSeparations = new double[n];
        int[] nNextActive = new int[n];

        //calculate initial separation rows
        for (int i = 0; i < n; i++) {
            double fSum = 0;
            for (int j = 0; j < n; j++) {
                fSum += fDist[i][j];
            }
            fSeparationSums[i] = fSum;
            fSeparations[i] = fSum / (nClusters - 2);
            nNextActive[i] = i + 1;
        }

        while (nClusters > 2) {
            // find minimum
            int iMin1 = -1;
            int iMin2 = -1;
            double fMin = Double.MAX_VALUE;
            if (m_bDebug) {
                for (int i = 0; i < n; i++) {
                    if (nClusterID[i].size() > 0) {
                        double[] fRow = fDist[i];
                        double fSep1 = fSeparations[i];
                        for (int j = 0; j < n; j++) {
                            if (nClusterID[j].size() > 0 && i != j) {
                                double fSep2 = fSeparations[j];
                                double fVal = fRow[j] - fSep1 - fSep2;

                                if (fVal < fMin) {
                                    // new minimum
                                    iMin1 = i;
                                    iMin2 = j;
                                    fMin = fVal;
                                }
                            }
                        }
                    }
                }
            } else {
                int i = 0;
                while (i < n) {
                    double fSep1 = fSeparations[i];
                    double[] fRow = fDist[i];
                    int j = nNextActive[i];
                    while (j < n) {
                        double fSep2 = fSeparations[j];
                        double fVal = fRow[j] - fSep1 - fSep2;
                        if (fVal < fMin) {
                            // new minimum
                            iMin1 = i;
                            iMin2 = j;
                            fMin = fVal;
                        }
                        j = nNextActive[j];
                    }
                    i = nNextActive[i];
                }
            }
            // record distance
            double fMinDistance = fDist[iMin1][iMin2];
            nClusters--;
            double fSep1 = fSeparations[iMin1];
            double fSep2 = fSeparations[iMin2];
            double fDist1 = (0.5 * fMinDistance) + (0.5 * (fSep1 - fSep2));
            double fDist2 = (0.5 * fMinDistance) + (0.5 * (fSep2 - fSep1));
            if (nClusters > 2) {
                // update separations  & distance
                double fNewSeparationSum = 0;
                double fMutualDistance = fDist[iMin1][iMin2];
                double[] fRow1 = fDist[iMin1];
                double[] fRow2 = fDist[iMin2];
                for (int i = 0; i < n; i++) {
                    if (i == iMin1 || i == iMin2 || nClusterID[i].size() == 0) {
                        fRow1[i] = 0;
                    } else {
                        double fVal1 = fRow1[i];
                        double fVal2 = fRow2[i];
                        double fDistance = (fVal1 + fVal2 - fMutualDistance) / 2.0;
                        fNewSeparationSum += fDistance;
                        // update the separationsum of cluster i.
                        fSeparationSums[i] += (fDistance - fVal1 - fVal2);
                        fSeparations[i] = fSeparationSums[i] / (nClusters - 2);
                        fRow1[i] = fDistance;
                        fDist[i][iMin1] = fDistance;
                    }
                }
                fSeparationSums[iMin1] = fNewSeparationSum;
                fSeparations[iMin1] = fNewSeparationSum / (nClusters - 2);
                fSeparationSums[iMin2] = 0;
                merge(iMin1, iMin2, fDist1, fDist2, nClusterID, clusterNodes);
                int iPrev = iMin2;
                // since iMin1 < iMin2 we havenActiveRows[0] >= 0, so the next loop should be save
                while (nClusterID[iPrev].size() == 0) {
                    iPrev--;
                }
                nNextActive[iPrev] = nNextActive[iMin2];
            } else {
                merge(iMin1, iMin2, fDist1, fDist2, nClusterID, clusterNodes);
                break;
            }
        }

        for (int i = 0; i < n; i++) {
            if (nClusterID[i].size() > 0) {
                for (int j = i + 1; j < n; j++) {
                    if (nClusterID[j].size() > 0) {
                        double fDist1 = fDist[i][j];
                        if (nClusterID[i].size() == 1) {
                            merge(i, j, fDist1, 0, nClusterID, clusterNodes);
                        } else if (nClusterID[j].size() == 1) {
                            merge(i, j, 0, fDist1, nClusterID, clusterNodes);
                        } else {
                            merge(i, j, fDist1 / 2.0, fDist1 / 2.0, nClusterID, clusterNodes);
                        }
                        break;
                    }
                }
            }
        }
    } // neighborJoining

    /** Perform clustering using a link method
     * This implementation uses a priority queue resulting in a O(n^2 log(n)) algorithm
     * @param nClusters number of clusters
     * @param nClusterID 
     * @param clusterNodes 
     */
    void doLinkClustering(int nClusters, Vector<Integer>[] nClusterID, Node[] clusterNodes) {
        int nInstances = m_instances.numInstances();

        //double [][] fDistance0 = new double[nClusters][nClusters];
        double[][] fDistance0 = new double[nInstances][nInstances];

        for (int i = 0; i < nClusters; i++) {
            fDistance0[i][i] = 0;
            for (int j = i + 1; j < nClusters; j++) {
                fDistance0[i][j] = getDistance0(nClusterID[i], nClusterID[j]);
                fDistance0[j][i] = fDistance0[i][j];

            }
        }
        PriorityQueue<Tuple> queue = null;
        if (this.initClusterID != null) {
            //
            int initNcluster = nInstances;
            Vector<Integer>[] initClusterID = this.initClusterID;

            for (int i = 0; i < initClusterID.length; ++i) {
                if (initClusterID[i].size() > 1) {

                    int base = initClusterID[i].elementAt(0);
                    for (int j = 1; j < initClusterID[i].size(); ++j) {
                        int des = initClusterID[i].elementAt(j);
                        merge(base, des, fDistance0[base][des], fDistance0[base][des], nClusterID, clusterNodes);
                        initNcluster--;
                    }
                }
                if (initNcluster <= m_nNumClusters)
                    break;
            }

            nClusters = initNcluster;
            queue = new PriorityQueue<Tuple>(nClusters * nClusters / 2, new TupleComparator());
            for (int i = 0; i < nInstances; i++) {
                for (int j = i + 1; j < nInstances; j++) {
                    if (nClusterID[i].size() != 0 && nClusterID[j].size() != 0) {

                        double fDistance = getDistance(fDistance0, nClusterID[i], nClusterID[j]);
                        queue.add(new Tuple(fDistance, i, j, nClusterID[i].size(), nClusterID[j].size()));
                    }
                }
            }
        } else {
            queue = new PriorityQueue<Tuple>(nClusters * nClusters / 2, new TupleComparator());
            for (int i = 0; i < nClusters; i++)
                for (int j = i + 1; j < nClusters; j++)
                    queue.add(new Tuple(fDistance0[j][i], i, j, 1, 1));

        }

        while (nClusters > m_nNumClusters) {
            int iMin1 = -1;
            int iMin2 = -1;
            // find closest two clusters

            // use priority queue to find next best pair to cluster
            Tuple t;
            do {
                t = queue.poll();
            } while (t != null && (nClusterID[t.m_iCluster1].size() != t.m_nClusterSize1
                    || nClusterID[t.m_iCluster2].size() != t.m_nClusterSize2));
            iMin1 = t.m_iCluster1;
            iMin2 = t.m_iCluster2;
            merge(iMin1, iMin2, t.m_fDist, t.m_fDist, nClusterID, clusterNodes);

            // merge  clusters

            // update distances & queue
            for (int i = 0; i < nInstances; i++) {
                if (i != iMin1 && nClusterID[i].size() != 0) {
                    int i1 = Math.min(iMin1, i);
                    int i2 = Math.max(iMin1, i);
                    double fDistance = getDistance(fDistance0, nClusterID[i1], nClusterID[i2]);
                    queue.add(new Tuple(fDistance, i1, i2, nClusterID[i1].size(), nClusterID[i2].size()));
                }
            }

            nClusters--;
        }
        int a = 5;
        int b = a;
    } // doLinkClustering

    void merge(int iMin1, int iMin2, double fDist1, double fDist2, Vector<Integer>[] nClusterID,
            Node[] clusterNodes) {
        if (m_bDebug) {
            System.err.println("Merging " + iMin1 + " " + iMin2 + " " + fDist1 + " " + fDist2);
        }
        if (iMin1 > iMin2) {
            int h = iMin1;
            iMin1 = iMin2;
            iMin2 = h;
            double f = fDist1;
            fDist1 = fDist2;
            fDist2 = f;
        }
        nClusterID[iMin1].addAll(nClusterID[iMin2]);
        nClusterID[iMin2].removeAllElements();

        // track hierarchy
        Node node = new Node();
        if (clusterNodes[iMin1] == null) {
            node.m_iLeftInstance = iMin1;
        } else {
            node.m_left = clusterNodes[iMin1];
            clusterNodes[iMin1].m_parent = node;
        }
        if (clusterNodes[iMin2] == null) {
            node.m_iRightInstance = iMin2;
        } else {
            node.m_right = clusterNodes[iMin2];
            clusterNodes[iMin2].m_parent = node;
        }
        if (m_bDistanceIsBranchLength) {
            node.setLength(fDist1, fDist2);
        } else {
            node.setHeight(fDist1, fDist2);
        }
        clusterNodes[iMin1] = node;
    } // merge

    /** calculate distance the first time when setting up the distance matrix **/
    double getDistance0(Vector<Integer> cluster1, Vector<Integer> cluster2) {
        double fBestDist = Double.MAX_VALUE;
        switch (m_nLinkType) {
        case SINGLE:
        case NEIGHBOR_JOINING:
        case CENTROID:
        case COMPLETE:
        case ADJCOMLPETE:
        case AVERAGE:
        case MEAN:
            // set up two instances for distance function
            Instance instance1 = (Instance) m_instances.instance(cluster1.elementAt(0)).copy();
            Instance instance2 = (Instance) m_instances.instance(cluster2.elementAt(0)).copy();
            fBestDist = m_DistanceFunction.distance(instance1, instance2, cluster1.elementAt(0),
                    cluster2.elementAt(0));

            break;
        case WARD: {
            // finds the distance of the change in caused by merging the cluster.
            // The information of a cluster is calculated as the error sum of squares of the
            // centroids of the cluster and its members.
            double ESS1 = calcESS(cluster1);
            double ESS2 = calcESS(cluster2);
            Vector<Integer> merged = new Vector<Integer>();
            merged.addAll(cluster1);
            merged.addAll(cluster2);
            double ESS = calcESS(merged);
            fBestDist = ESS * merged.size() - ESS1 * cluster1.size() - ESS2 * cluster2.size();
        }
            break;
        }
        return fBestDist;
    } // getDistance0

    /** calculate the distance between two clusters 
     * @param cluster1 list of indices of instances in the first cluster
     * @param cluster2 dito for second cluster
     * @return distance between clusters based on link type
     */
    double getDistance(double[][] fDistance, Vector<Integer> cluster1, Vector<Integer> cluster2) {
        double fBestDist = Double.MAX_VALUE;
        //double SemiDist =  m_DistanceFunction.Semi_distance(fDistance, cluster1, cluster2);
        switch (m_nLinkType) {
        case SINGLE:
            // find single link distance aka minimum link, which is the closest distance between
            // any item in cluster1 and any item in cluster2
            fBestDist = Double.MAX_VALUE;
            for (int i = 0; i < cluster1.size(); i++) {
                int i1 = cluster1.elementAt(i);
                for (int j = 0; j < cluster2.size(); j++) {
                    int i2 = cluster2.elementAt(j);
                    double fDist = fDistance[i1][i2];
                    if (fBestDist > fDist) {
                        fBestDist = fDist;
                    }
                }
            }
            break;
        case COMPLETE:
        case ADJCOMLPETE:
            // find complete link distance aka maximum link, which is the largest distance between
            // any item in cluster1 and any item in cluster2
            fBestDist = 0;
            for (int i = 0; i < cluster1.size(); i++) {
                int i1 = cluster1.elementAt(i);
                for (int j = 0; j < cluster2.size(); j++) {
                    int i2 = cluster2.elementAt(j);
                    double fDist = fDistance[i1][i2];
                    if (fBestDist < fDist) {
                        fBestDist = fDist;
                    }
                }
            }
            if (m_nLinkType == COMPLETE) {
                break;
            }
            // calculate adjustment, which is the largest within cluster distance
            double fMaxDist = 0;
            for (int i = 0; i < cluster1.size(); i++) {
                int i1 = cluster1.elementAt(i);
                for (int j = i + 1; j < cluster1.size(); j++) {
                    int i2 = cluster1.elementAt(j);
                    double fDist = fDistance[i1][i2];
                    if (fMaxDist < fDist) {
                        fMaxDist = fDist;
                    }
                }
            }
            for (int i = 0; i < cluster2.size(); i++) {
                int i1 = cluster2.elementAt(i);
                for (int j = i + 1; j < cluster2.size(); j++) {
                    int i2 = cluster2.elementAt(j);
                    double fDist = fDistance[i1][i2];
                    if (fMaxDist < fDist) {
                        fMaxDist = fDist;
                    }
                }
            }
            fBestDist -= fMaxDist;
            break;
        case AVERAGE:
            // finds average distance between the elements of the two clusters
            fBestDist = 0;
            for (int i = 0; i < cluster1.size(); i++) {
                int i1 = cluster1.elementAt(i);
                for (int j = 0; j < cluster2.size(); j++) {
                    int i2 = cluster2.elementAt(j);
                    fBestDist += fDistance[i1][i2];
                }
            }
            fBestDist /= (cluster1.size() * cluster2.size());
            break;
        case MEAN: {
            // calculates the mean distance of a merged cluster (akak Group-average agglomerative clustering)
            Vector<Integer> merged = new Vector<Integer>();
            merged.addAll(cluster1);
            merged.addAll(cluster2);
            fBestDist = 0;
            for (int i = 0; i < merged.size(); i++) {
                int i1 = merged.elementAt(i);
                for (int j = i + 1; j < merged.size(); j++) {
                    int i2 = merged.elementAt(j);
                    fBestDist += fDistance[i1][i2];
                }
            }
            int n = merged.size();
            fBestDist /= (n * (n - 1.0) / 2.0);
        }
            break;
        case CENTROID:
            // finds the distance of the centroids of the clusters
            double[] fValues1 = new double[m_instances.numAttributes()];
            for (int i = 0; i < cluster1.size(); i++) {
                Instance instance = m_instances.instance(cluster1.elementAt(i));
                for (int j = 0; j < m_instances.numAttributes(); j++) {
                    fValues1[j] += instance.value(j);
                }
            }
            double[] fValues2 = new double[m_instances.numAttributes()];
            for (int i = 0; i < cluster2.size(); i++) {
                Instance instance = m_instances.instance(cluster2.elementAt(i));
                for (int j = 0; j < m_instances.numAttributes(); j++) {
                    fValues2[j] += instance.value(j);
                }
            }
            for (int j = 0; j < m_instances.numAttributes(); j++) {
                fValues1[j] /= cluster1.size();
                fValues2[j] /= cluster2.size();
            }
            // set up two instances for distance function
            Instance instance1 = (Instance) m_instances.instance(0).copy();
            Instance instance2 = (Instance) m_instances.instance(0).copy();
            for (int j = 0; j < m_instances.numAttributes(); j++) {
                instance1.setValue(j, fValues1[j]);
                instance2.setValue(j, fValues2[j]);
            }
            fBestDist = m_DistanceFunction.distance(instance1, instance2);
            break;
        case WARD: {
            // finds the distance of the change in caused by merging the cluster.
            // The information of a cluster is calculated as the error sum of squares of the
            // centroids of the cluster and its members.
            double ESS1 = calcESS(cluster1);
            double ESS2 = calcESS(cluster2);
            Vector<Integer> merged = new Vector<Integer>();
            merged.addAll(cluster1);
            merged.addAll(cluster2);
            double ESS = calcESS(merged);
            fBestDist = ESS * merged.size() - ESS1 * cluster1.size() - ESS2 * cluster2.size();
        }
            break;
        }
        double alpha = 0.5;
        //return alpha*SemiDist + (1-alpha)*fBestDist;
        return fBestDist;
    } // getDistance

    /** calculated error sum-of-squares for instances wrt centroid **/
    double calcESS(Vector<Integer> cluster) {
        double[] fValues1 = new double[m_instances.numAttributes()];
        for (int i = 0; i < cluster.size(); i++) {
            Instance instance = m_instances.instance(cluster.elementAt(i));
            for (int j = 0; j < m_instances.numAttributes(); j++) {
                fValues1[j] += instance.value(j);
            }
        }
        for (int j = 0; j < m_instances.numAttributes(); j++) {
            fValues1[j] /= cluster.size();
        }
        // set up two instances for distance function
        Instance centroid = (Instance) m_instances.instance(cluster.elementAt(0)).copy();
        for (int j = 0; j < m_instances.numAttributes(); j++) {
            centroid.setValue(j, fValues1[j]);
        }
        double fESS = 0;
        for (int i = 0; i < cluster.size(); i++) {
            Instance instance = m_instances.instance(cluster.elementAt(i));
            fESS += m_DistanceFunction.distance(centroid, instance);
        }
        return fESS / cluster.size();
    } // calcESS

    @Override
    /** instances are assigned a cluster by finding the instance in the training data 
     * with the closest distance to the instance to be clustered. The cluster index of
     * the training data point is taken as the cluster index.
     */
    public int clusterInstance(Instance instance) throws Exception {
        if (m_instances.numInstances() == 0) {
            return 0;
        }
        double fBestDist = Double.MAX_VALUE;
        int iBestInstance = -1;
        for (int i = 0; i < m_instances.numInstances(); i++) {
            double fDist = m_DistanceFunction.distance(instance, m_instances.instance(i));
            if (fDist < fBestDist) {
                fBestDist = fDist;
                iBestInstance = i;
            }
        }
        return m_nClusterNr[iBestInstance];
    }

    @Override
    /** create distribution with all clusters having zero probability, except the
     * cluster the instance is assigned to.
     */
    public double[] distributionForInstance(Instance instance) throws Exception {
        if (numberOfClusters() == 0) {
            double[] p = new double[1];
            p[0] = 1;
            return p;
        }
        double[] p = new double[numberOfClusters()];
        p[clusterInstance(instance)] = 1.0;
        return p;
    }

    @Override
    public Capabilities getCapabilities() {
        Capabilities result = new Capabilities(this);
        result.disableAll();
        result.enable(Capability.NO_CLASS);

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);
        result.enable(Capability.STRING_ATTRIBUTES);

        // other
        result.setMinimumNumberInstances(0);
        return result;
    }

    @Override
    public int numberOfClusters() throws Exception {
        return Math.min(m_nNumClusters, m_instances.numInstances());
    }

    /**
     * Returns an enumeration describing the available options.
     *
     * @return an enumeration of all the available options.
     */
    public Enumeration listOptions() {

        Vector newVector = new Vector(8);
        newVector.addElement(new Option(
                "\tIf set, classifier is run in debug mode and\n" + "\tmay output additional info to the console",
                "D", 0, "-D"));
        newVector.addElement(new Option(
                "\tIf set, distance is interpreted as branch length\n" + "\totherwise it is node height.", "B", 0,
                "-B"));

        newVector.addElement(new Option("\tnumber of clusters", "N", 1, "-N <Nr Of Clusters>"));
        newVector.addElement(
                new Option("\tFlag to indicate the cluster should be printed in Newick format.", "P", 0, "-P"));
        newVector.addElement(new Option(
                "Link type (Single, Complete, Average, Mean, Centroid, Ward, Adjusted complete, Neighbor joining)",
                "L", 1, "-L [SINGLE|COMPLETE|AVERAGE|MEAN|CENTROID|WARD|ADJCOMLPETE|NEIGHBOR_JOINING]"));
        newVector.add(new Option("\tDistance function to use.\n" + "\t(default: weka.core.EuclideanDistance)", "A",
                1, "-A <classname and options>"));
        return newVector.elements();
    }

    /**
     * Parses a given list of options. <p/>
     *
        <!-- options-start -->
     * Valid options are: <p/>
     * 
        <!-- options-end -->
     *
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    public void setOptions(String[] options) throws Exception {
        m_bPrintNewick = Utils.getFlag('P', options);

        String optionString = Utils.getOption('N', options);
        if (optionString.length() != 0) {
            Integer temp = new Integer(optionString);
            setNumClusters(temp);
        } else {
            setNumClusters(2);
        }

        setDebug(Utils.getFlag('D', options));
        setDistanceIsBranchLength(Utils.getFlag('B', options));

        String sLinkType = Utils.getOption('L', options);

        if (sLinkType.compareTo("SINGLE") == 0) {
            setLinkType(new SelectedTag(SINGLE, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("COMPLETE") == 0) {
            setLinkType(new SelectedTag(COMPLETE, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("AVERAGE") == 0) {
            setLinkType(new SelectedTag(AVERAGE, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("MEAN") == 0) {
            setLinkType(new SelectedTag(MEAN, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("CENTROID") == 0) {
            setLinkType(new SelectedTag(CENTROID, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("WARD") == 0) {
            setLinkType(new SelectedTag(WARD, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("ADJCOMLPETE") == 0) {
            setLinkType(new SelectedTag(ADJCOMLPETE, TAGS_LINK_TYPE));
        }
        if (sLinkType.compareTo("NEIGHBOR_JOINING") == 0) {
            setLinkType(new SelectedTag(NEIGHBOR_JOINING, TAGS_LINK_TYPE));
        }

        String nnSearchClass = Utils.getOption('A', options);
        if (nnSearchClass.length() != 0) {
            String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
            if (nnSearchClassSpec.length == 0) {
                throw new Exception("Invalid DistanceFunction specification string.");
            }
            String className = nnSearchClassSpec[0];
            nnSearchClassSpec[0] = "";

        }

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the clusterer.
     *
     * @return an array of strings suitable for passing to setOptions()
     */
    public String[] getOptions() {

        String[] options = new String[14];
        int current = 0;

        options[current++] = "-N";
        options[current++] = "" + getNumClusters();

        options[current++] = "-L";
        switch (m_nLinkType) {
        case (SINGLE):
            options[current++] = "SINGLE";
            break;
        case (COMPLETE):
            options[current++] = "COMPLETE";
            break;
        case (AVERAGE):
            options[current++] = "AVERAGE";
            break;
        case (MEAN):
            options[current++] = "MEAN";
            break;
        case (CENTROID):
            options[current++] = "CENTROID";
            break;
        case (WARD):
            options[current++] = "WARD";
            break;
        case (ADJCOMLPETE):
            options[current++] = "ADJCOMLPETE";
            break;
        case (NEIGHBOR_JOINING):
            options[current++] = "NEIGHBOR_JOINING";
            break;
        }
        if (m_bPrintNewick) {
            options[current++] = "-P";
        }
        if (getDebug()) {
            options[current++] = "-D";
        }
        if (getDistanceIsBranchLength()) {
            options[current++] = "-B";
        }

        options[current++] = "-A";
        options[current++] = (m_DistanceFunction.getClass().getName() + " "
                + Utils.joinOptions(m_DistanceFunction.getOptions())).trim();

        while (current < options.length) {
            options[current++] = "";
        }

        return options;
    }

    public String toString() {
        StringBuffer buf = new StringBuffer();
        int attIndex = m_instances.classIndex();
        if (attIndex < 0) {
            // try find a string, or last attribute otherwise
            attIndex = 0;
            while (attIndex < m_instances.numAttributes() - 1) {
                if (m_instances.attribute(attIndex).isString()) {
                    break;
                }
                attIndex++;
            }
        }
        try {
            if (m_bPrintNewick && (numberOfClusters() > 0)) {
                for (int i = 0; i < m_clusters.length; i++) {
                    if (m_clusters[i] != null) {
                        buf.append("Cluster " + i + "\n");
                        if (m_instances.attribute(attIndex).isString()) {
                            buf.append(m_clusters[i].toString(attIndex));
                        } else {
                            buf.append(m_clusters[i].toString2(attIndex));
                        }
                        buf.append("\n\n");
                    }
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
        return buf.toString();
    }

    /**
     * Set debugging mode.
     *
     * @param debug true if debug output should be printed
     */
    public void setDebug(boolean debug) {

        m_bDebug = debug;
    }

    /**
     * Get whether debugging is turned on.
     *
     * @return true if debugging output is on
     */
    public boolean getDebug() {

        return m_bDebug;
    }

    public boolean getDistanceIsBranchLength() {
        return m_bDistanceIsBranchLength;
    }

    public void setDistanceIsBranchLength(boolean bDistanceIsHeight) {
        m_bDistanceIsBranchLength = bDistanceIsHeight;
    }

    public String distanceIsBranchLengthTipText() {
        return "If set to false, the distance between clusters is interpreted "
                + "as the height of the node linking the clusters. This is appropriate for "
                + "example for single link clustering. However, for neighbor joining, the "
                + "distance is better interpreted as branch length. Set this flag to "
                + "get the latter interpretation.";
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String debugTipText() {
        return "If set to true, classifier may output additional info to " + "the console.";
    }

    /**
     * @return a string to describe the NumClusters
     */
    public String numClustersTipText() {
        return "Sets the number of clusters. " + "If a single hierarchy is desired, set this to 1.";
    }

    /**
     * @return a string to describe the print Newick flag
     */
    public String printNewickTipText() {
        return "Flag to indicate whether the cluster should be print in Newick format."
                + " This can be useful for display in other programs. However, for large datasets"
                + " a lot of text may be produced, which may not be a nuisance when the Newick format"
                + " is not required";
    }

    /**
     * @return a string to describe the distance function
     */
    public String distanceFunctionTipText() {
        return "Sets the distance function, which measures the distance between two individual. "
                + "instances (or possibly the distance between an instance and the centroid of a cluster"
                + "depending on the Link type).";
    }

    /**
     * @return a string to describe the Link type
     */
    public String linkTypeTipText() {
        return "Sets the method used to measure the distance between two clusters.\n" + "SINGLE:\n"
                + " find single link distance aka minimum link, which is the closest distance between"
                + " any item in cluster1 and any item in cluster2\n" + "COMPLETE:\n"
                + " find complete link distance aka maximum link, which is the largest distance between"
                + " any item in cluster1 and any item in cluster2\n" + "ADJCOMLPETE:\n"
                + " as COMPLETE, but with adjustment, which is the largest within cluster distance\n" + "AVERAGE:\n"
                + " finds average distance between the elements of the two clusters\n" + "MEAN: \n"
                + " calculates the mean distance of a merged cluster (akak Group-average agglomerative clustering)\n"
                + "CENTROID:\n" + " finds the distance of the centroids of the clusters\n" + "WARD:\n"
                + " finds the distance of the change in caused by merging the cluster."
                + " The information of a cluster is calculated as the error sum of squares of the"
                + " centroids of the cluster and its members.\n" + "NEIGHBOR_JOINING\n"
                + " use neighbor joining algorithm.";
    }

    /**
     * This will return a string describing the clusterer.
     * @return The string.
     */
    public String globalInfo() {
        return "Hierarchical clustering class.\n"
                + "Implements a number of classic agglomorative (i.e. bottom up) hierarchical clustering methods"
                + "based on .";
    }

    public String graph() throws Exception {
        if (numberOfClusters() == 0) {
            return "Newick:(no,clusters)";
        }
        int attIndex = m_instances.classIndex();
        if (attIndex < 0) {
            // try find a string, or last attribute otherwise
            attIndex = 0;
            while (attIndex < m_instances.numAttributes() - 1) {
                if (m_instances.attribute(attIndex).isString()) {
                    break;
                }
                attIndex++;
            }
        }
        String sNewick = null;
        if (m_instances.attribute(attIndex).isString()) {
            sNewick = m_clusters[0].toString(attIndex);
        } else {
            sNewick = m_clusters[0].toString2(attIndex);
        }
        return "Newick:" + sNewick;
    }

    public int graphType() {
        return Drawable.Newick;
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 6592 $");
    }
} // class HierarchicalClusterer