org.zywx.wbpalmstar.plugin.uexzxing.qrcode.decoder.DecodedBitStreamParser.java Source code

Java tutorial

Introduction

Here is the source code for org.zywx.wbpalmstar.plugin.uexzxing.qrcode.decoder.DecodedBitStreamParser.java

Source

/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.zywx.wbpalmstar.plugin.uexzxing.qrcode.decoder;

import java.io.UnsupportedEncodingException;
import java.util.Hashtable;
import java.util.Vector;

import org.apache.http.util.ByteArrayBuffer;
import org.zywx.wbpalmstar.plugin.uexzxing.FormatException;
import org.zywx.wbpalmstar.plugin.uexzxing.common.BitSource;
import org.zywx.wbpalmstar.plugin.uexzxing.common.CharacterSetECI;
import org.zywx.wbpalmstar.plugin.uexzxing.common.DecoderResult;
import org.zywx.wbpalmstar.plugin.uexzxing.common.StringUtils;

/**
 * <p>QR Codes can encode text as bits in one of several modes, and can use multiple modes
 * in one QR Code. This class decodes the bits back into text.</p>
 *
 * <p>See ISO 18004:2006, 6.4.3 - 6.4.7</p>
 *
 * @author Sean Owen
 */
@SuppressWarnings("rawtypes")
final class DecodedBitStreamParser {

    /**
     * See ISO 18004:2006, 6.4.4 Table 5
     */
    private static final char[] ALPHANUMERIC_CHARS = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
            'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
            'X', 'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':' };

    private DecodedBitStreamParser() {
    }

    static DecoderResult decode(byte[] bytes, Version version, ErrorCorrectionLevel ecLevel, Hashtable hints)
            throws FormatException {
        BitSource bits = new BitSource(bytes);
        StringBuffer result = new StringBuffer(50);
        CharacterSetECI currentCharacterSetECI = null;
        boolean fc1InEffect = false;
        Vector byteSegments = new Vector(1);
        Mode mode;
        do {
            // While still another segment to read...
            if (bits.available() < 4) {
                // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
                mode = Mode.TERMINATOR;
            } else {
                try {
                    mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits
                } catch (IllegalArgumentException iae) {
                    throw FormatException.getFormatInstance();
                }
            }
            if (!mode.equals(Mode.TERMINATOR)) {
                if (mode.equals(Mode.FNC1_FIRST_POSITION) || mode.equals(Mode.FNC1_SECOND_POSITION)) {
                    // We do little with FNC1 except alter the parsed result a bit according to the spec
                    fc1InEffect = true;
                } else if (mode.equals(Mode.STRUCTURED_APPEND)) {
                    // not really supported; all we do is ignore it
                    // Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
                    bits.readBits(16);
                } else if (mode.equals(Mode.ECI)) {
                    // Count doesn't apply to ECI
                    int value = parseECIValue(bits);
                    currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value);
                    if (currentCharacterSetECI == null) {
                        throw FormatException.getFormatInstance();
                    }
                } else {
                    // How many characters will follow, encoded in this mode?
                    int count = bits.readBits(mode.getCharacterCountBits(version));
                    if (mode.equals(Mode.NUMERIC)) {
                        decodeNumericSegment(bits, result, count);
                    } else if (mode.equals(Mode.ALPHANUMERIC)) {
                        decodeAlphanumericSegment(bits, result, count, fc1InEffect);
                    } else if (mode.equals(Mode.BYTE)) {
                        decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments, hints);
                    } else if (mode.equals(Mode.KANJI)) {
                        decodeKanjiSegment(bits, result, count);
                    } else {
                        throw FormatException.getFormatInstance();
                    }
                }
            }
        } while (!mode.equals(Mode.TERMINATOR));

        return new DecoderResult(bytes, result.toString(), byteSegments.isEmpty() ? null : byteSegments, ecLevel);
    }

    private static void decodeKanjiSegment(BitSource bits, StringBuffer result, int count) throws FormatException {
        // Each character will require 2 bytes. Read the characters as 2-byte pairs
        // and decode as Shift_JIS afterwards
        byte[] buffer = new byte[2 * count];
        int offset = 0;
        while (count > 0) {
            // Each 13 bits encodes a 2-byte character
            int twoBytes = bits.readBits(13);
            int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
            if (assembledTwoBytes < 0x01F00) {
                // In the 0x8140 to 0x9FFC range
                assembledTwoBytes += 0x08140;
            } else {
                // In the 0xE040 to 0xEBBF range
                assembledTwoBytes += 0x0C140;
            }
            buffer[offset] = (byte) (assembledTwoBytes >> 8);
            buffer[offset + 1] = (byte) assembledTwoBytes;
            offset += 2;
            count--;
        }
        // Shift_JIS may not be supported in some environments:
        try {
            result.append(new String(buffer, StringUtils.SHIFT_JIS));
        } catch (UnsupportedEncodingException uee) {
            throw FormatException.getFormatInstance();
        }
    }

    @SuppressWarnings("unchecked")
    private static void decodeByteSegment(BitSource bits, StringBuffer result, int count,
            CharacterSetECI currentCharacterSetECI, Vector byteSegments, Hashtable hints) throws FormatException {
        byte[] readBytes = new byte[count];
        if (count << 3 > bits.available()) {
            throw FormatException.getFormatInstance();
        }
        for (int i = 0; i < count; i++) {
            readBytes[i] = (byte) bits.readBits(8);
        }

        String encoding;
        if (currentCharacterSetECI == null) {
            // The spec isn't clear on this mode; see
            // section 6.4.5: t does not say which encoding to assuming
            // upon decoding. I have seen ISO-8859-1 used as well as
            // Shift_JIS -- without anything like an ECI designator to
            // give a hint.
            encoding = StringUtils.guessEncoding(readBytes, hints);
        } else {
            encoding = currentCharacterSetECI.getEncodingName();
        }
        if (null != encoding && !encoding.equals("UTF8")) {
            encoding = StringUtils.GBK;
        }
        try {
            int len = readBytes.length;
            ByteArrayBuffer buffer = new ByteArrayBuffer(len + 20);
            for (int i = 0; i < len; ++i) {
                int c = readBytes[i];
                if (c == 34 || c == 39 || c == 92 || c == 10 || c == 13 || c == 38) {
                    buffer.append('\\');
                }
                buffer.append(c);
            }
            readBytes = buffer.toByteArray();
            result.append(new String(readBytes, encoding));
            //    result.append(new String(readBytes, encoding).replaceAll("\\s*|\t|\r|\n", "\\n"));
        } catch (UnsupportedEncodingException uce) {
            throw FormatException.getFormatInstance();
        }
        byteSegments.addElement(readBytes);
    }

    private static char toAlphaNumericChar(int value) throws FormatException {
        if (value >= ALPHANUMERIC_CHARS.length) {
            throw FormatException.getFormatInstance();
        }
        return ALPHANUMERIC_CHARS[value];
    }

    private static void decodeAlphanumericSegment(BitSource bits, StringBuffer result, int count,
            boolean fc1InEffect) throws FormatException {
        // Read two characters at a time
        int start = result.length();
        while (count > 1) {
            int nextTwoCharsBits = bits.readBits(11);
            result.append(toAlphaNumericChar(nextTwoCharsBits / 45));
            result.append(toAlphaNumericChar(nextTwoCharsBits % 45));
            count -= 2;
        }
        if (count == 1) {
            // special case: one character left
            result.append(toAlphaNumericChar(bits.readBits(6)));
        }
        // See section 6.4.8.1, 6.4.8.2
        if (fc1InEffect) {
            // We need to massage the result a bit if in an FNC1 mode:
            for (int i = start; i < result.length(); i++) {
                if (result.charAt(i) == '%') {
                    if (i < result.length() - 1 && result.charAt(i + 1) == '%') {
                        // %% is rendered as %
                        result.deleteCharAt(i + 1);
                    } else {
                        // In alpha mode, % should be converted to FNC1 separator 0x1D
                        result.setCharAt(i, (char) 0x1D);
                    }
                }
            }
        }
    }

    private static void decodeNumericSegment(BitSource bits, StringBuffer result, int count)
            throws FormatException {
        // Read three digits at a time
        while (count >= 3) {
            // Each 10 bits encodes three digits
            int threeDigitsBits = bits.readBits(10);
            if (threeDigitsBits >= 1000) {
                throw FormatException.getFormatInstance();
            }
            result.append(toAlphaNumericChar(threeDigitsBits / 100));
            result.append(toAlphaNumericChar((threeDigitsBits / 10) % 10));
            result.append(toAlphaNumericChar(threeDigitsBits % 10));
            count -= 3;
        }
        if (count == 2) {
            // Two digits left over to read, encoded in 7 bits
            int twoDigitsBits = bits.readBits(7);
            if (twoDigitsBits >= 100) {
                throw FormatException.getFormatInstance();
            }
            result.append(toAlphaNumericChar(twoDigitsBits / 10));
            result.append(toAlphaNumericChar(twoDigitsBits % 10));
        } else if (count == 1) {
            // One digit left over to read
            int digitBits = bits.readBits(4);
            if (digitBits >= 10) {
                throw FormatException.getFormatInstance();
            }
            result.append(toAlphaNumericChar(digitBits));
        }
    }

    private static int parseECIValue(BitSource bits) {
        int firstByte = bits.readBits(8);
        if ((firstByte & 0x80) == 0) {
            // just one byte
            return firstByte & 0x7F;
        } else if ((firstByte & 0xC0) == 0x80) {
            // two bytes
            int secondByte = bits.readBits(8);
            return ((firstByte & 0x3F) << 8) | secondByte;
        } else if ((firstByte & 0xE0) == 0xC0) {
            // three bytes
            int secondThirdBytes = bits.readBits(16);
            return ((firstByte & 0x1F) << 16) | secondThirdBytes;
        }
        throw new IllegalArgumentException("Bad ECI bits starting with byte " + firstByte);
    }

}