Java tutorial
/* * * vimarsha, Performance analysis: Machine Learning Approach * Copyright (C) 2013 vimarsha * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * / */ package org.vimarsha.classifier.impl; import org.vimarsha.exceptions.ClassificationFailedException; import weka.classifiers.meta.FilteredClassifier; import weka.classifiers.trees.J48; import weka.filters.unsupervised.attribute.Remove; /** * Created with IntelliJ IDEA. * User: sunimal */ public class WholeProgramClassifier extends AbstractClassifier { private String classificationResult; private String treeModel; public WholeProgramClassifier() { super(); } /** * Classifies whole program test instances, * * @return String containing the classification result of the evaluated program's dataset. * @throws ClassificationFailedException */ @Override public Object classify() throws ClassificationFailedException { J48 j48 = new J48(); Remove rm = new Remove(); String output = null; rm.setAttributeIndices("1"); FilteredClassifier fc = new FilteredClassifier(); fc.setFilter(rm); fc.setClassifier(j48); try { fc.buildClassifier(trainSet); this.treeModel = j48.toString(); double pred = fc.classifyInstance(testSet.instance(0)); output = testSet.classAttribute().value((int) pred); classificationResult = output; } catch (Exception ex) { throw new ClassificationFailedException(); } return output; } /** * Get the resulting String of a previously evaluated dataset. * * @return */ @Override public Object getClassificationResult() { return classificationResult; } public String getTreeModel() { return this.treeModel; } }