Java tutorial
/* * * Jaqpot - version 3 * * The JAQPOT-3 web services are OpenTox API-1.2 compliant web services. Jaqpot * is a web application that supports model training and data preprocessing algorithms * such as multiple linear regression, support vector machines, neural networks * (an in-house implementation based on an efficient algorithm), an implementation * of the leverage algorithm for domain of applicability estimation and various * data preprocessing algorithms like PLS and data cleanup. * * Copyright (C) 2009-2012 Pantelis Sopasakis & Charalampos Chomenides * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * Contact: * Pantelis Sopasakis * chvng@mail.ntua.gr * Address: Iroon Politechniou St. 9, Zografou, Athens Greece * tel. +30 210 7723236 * */ package org.opentox.jaqpot3.qsar.predictor; import org.opentox.jaqpot3.qsar.serializable.ScalingModel; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import org.opentox.jaqpot3.exception.JaqpotException; import org.opentox.jaqpot3.qsar.AbstractPredictor; import org.opentox.jaqpot3.qsar.IClientInput; import org.opentox.jaqpot3.qsar.IPredictor; import org.opentox.jaqpot3.qsar.exceptions.BadParameterException; import org.opentox.toxotis.core.component.Dataset; import org.opentox.toxotis.core.component.Feature; import org.opentox.toxotis.core.component.Model; import org.opentox.toxotis.exceptions.impl.ToxOtisException; import org.opentox.toxotis.factory.DatasetFactory; import weka.core.Attribute; import weka.core.Instances; /** * * @author Pantelis Sopasakis */ public class ScalingPredictor extends AbstractPredictor { /** * Feature URI ---> Scaled Feature URI */ private Map<String, String> featureToScaled = new HashMap<String, String>(); private void updateFeatureMap(Model model) { assert (model.getIndependentFeatures().size() == model.getDependentFeatures().size()); List<Feature> predictedFeatures = model.getPredictedFeatures(); Iterator<Feature> predictedIterator = predictedFeatures.iterator(); for (Feature f : model.getIndependentFeatures()) { featureToScaled.put(f.getUri().toString(), predictedIterator.next().getUri().toString()); } } @Override public Instances predict(Instances inputData) throws JaqpotException { try { ScalingModel actualModel = (ScalingModel) model.getActualModel(); Map<String, Double> mins = actualModel.getMinVals2(); Map<String, Double> maxs = actualModel.getMaxVals2(); Attribute attr; for (String attrName : actualModel.getExcludeAttributesDoA()) { attr = inputData.attribute(attrName); if (attr != null) { inputData.deleteAttributeAt(attr.index()); } } updateFeatureMap(model); //int Nattr = inputData.numAttributes(); int Ninst = inputData.numInstances(); Iterator<String> features = featureToScaled.keySet().iterator(); String nextFeature = null; Attribute currentAttribute = null; double currentMin = 0; double currentMax = 1; double currentValue = 0; while (features.hasNext()) { nextFeature = features.next(); currentMin = mins.get(nextFeature); currentMax = maxs.get(nextFeature); currentAttribute = inputData.attribute(nextFeature); for (int iInst = 0; iInst < Ninst; iInst++) { currentValue = inputData.instance(iInst).value(currentAttribute); currentValue = (currentValue - currentMin) / (currentMax - currentMin); inputData.instance(iInst).setValue(currentAttribute, currentValue); } } /* Rename Attributes in `inputData`*/ features = featureToScaled.keySet().iterator(); while (features.hasNext()) { nextFeature = features.next(); currentAttribute = inputData.attribute(nextFeature); if (currentAttribute == null) { throw new JaqpotException("The dataset you provided does not contain the necessary " + "feature : " + nextFeature); } inputData.renameAttribute(currentAttribute, featureToScaled.get(nextFeature)); } return inputData; } catch (Throwable thr) { thr.printStackTrace(); } return null; } }