org.openml.webapplication.fantail.dc.landmarking.SimpleLandmarkers.java Source code

Java tutorial

Introduction

Here is the source code for org.openml.webapplication.fantail.dc.landmarking.SimpleLandmarkers.java

Source

/*
 *  Webapplication - Java library that runs on OpenML servers
 *  Copyright (C) 2014 
 *  @author Jan N. van Rijn (j.n.van.rijn@liacs.leidenuniv.nl)
 *  @author Quan Sun (quan.sun.nz@gmail.com)
 *  
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *  
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *  
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *  
 */
package org.openml.webapplication.fantail.dc.landmarking;

import java.util.HashMap;
import java.util.Map;

import org.openml.webapplication.fantail.dc.Characterizer;
import org.openml.webapplication.fantail.dc.NFoldCrossValidationBased;

import weka.core.Instances;

public class SimpleLandmarkers extends Characterizer implements NFoldCrossValidationBased {

    private int m_NumFolds = 2;

    @Override
    public void setNumFolds(int n) {
        m_NumFolds = n;
    }

    protected final String[] ids = new String[] { "DecisionStumpErrRate", "DecisionStumpAUC", "NBErrRate", "NBAUC",
            "DecisionStumpKappa", "NBKappa" };

    public String[] getIDs() {
        return ids;
    }

    public Map<String, Double> characterize(Instances data) {

        int numFolds = m_NumFolds;

        double score1 = 0.5;
        double score2 = 0.5;

        double score5 = 0.5;
        double score6 = 0.5;

        double score3 = 0.5;
        double score4 = 0.5;

        weka.classifiers.trees.DecisionStump ds = new weka.classifiers.trees.DecisionStump();
        try {

            weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data);
            eval.crossValidateModel(ds, data, numFolds, new java.util.Random(1));

            score1 = eval.pctIncorrect();
            score2 = eval.weightedAreaUnderROC();
            score3 = eval.kappa();
        } catch (Exception e) {
            e.printStackTrace();
        }

        try {
            weka.classifiers.bayes.NaiveBayes nb = new weka.classifiers.bayes.NaiveBayes();

            weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data);
            eval.crossValidateModel(nb, data, numFolds, new java.util.Random(1));

            score5 = eval.pctIncorrect();
            score6 = eval.weightedAreaUnderROC();
            score4 = eval.kappa();

        } catch (Exception e) {
            e.printStackTrace();
        }

        Map<String, Double> qualities = new HashMap<String, Double>();
        qualities.put(ids[0], score1);
        qualities.put(ids[1], score2);
        qualities.put(ids[2], score5);
        qualities.put(ids[3], score6);
        qualities.put(ids[4], score3);
        qualities.put(ids[5], score4);
        return qualities;
    }
}