Java tutorial
/** * Created 3/06/2008 - 15:11:32 * Copyright Daniel McEnnis, see license.txt */ /* * This file is part of GraphRAT. * * GraphRAT is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GraphRAT is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GraphRAT. If not, see <http://www.gnu.org/licenses/>. */ package org.mcennis.graphrat.algorithm.clustering; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.logging.Level; import java.util.logging.Logger; import org.mcennis.graphrat.graph.Graph; import org.mcennis.graphrat.actor.Actor; import org.mcennis.graphrat.algorithm.Algorithm; import org.dynamicfactory.descriptors.*; import org.dynamicfactory.property.Property; import org.dynamicfactory.property.PropertyFactory; import org.mcennis.graphrat.algorithm.AlgorithmMacros; import org.mcennis.graphrat.descriptors.IODescriptorFactory; import org.mcennis.graphrat.descriptors.IODescriptor; import org.mcennis.graphrat.descriptors.IODescriptor.Type; import org.dynamicfactory.model.ModelShell; import org.mcennis.graphrat.query.ActorQuery; import org.mcennis.graphrat.query.ActorQueryFactory; import org.mcennis.graphrat.query.LinkQuery; import org.mcennis.graphrat.query.actor.ActorByMode; import weka.clusterers.Clusterer; import weka.core.Attribute; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; import weka.core.OptionHandler; /** * Utilize an arbitrary probabilistic-clusterer (vector of probable membership * in a cluster). Which clusterer used is determined by parameter. * * @author Daniel McEnnis */ public class WekaProbablisticClusterer extends ModelShell implements Algorithm { PropertiesInternal parameter = PropertiesFactory.newInstance().create(); LinkedList<IODescriptor> input = new LinkedList<IODescriptor>(); LinkedList<IODescriptor> output = new LinkedList<IODescriptor>(); public WekaProbablisticClusterer() { ParameterInternal name = ParameterFactory.newInstance().create("AlgorithmClass", String.class); SyntaxObject syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add("Weka Classifier Multi-Attribute"); parameter.add(name); name = ParameterFactory.newInstance().create("Name", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, Integer.MAX_VALUE, null, String.class); name.setRestrictions(syntax); name.add("Weka Classifier Multi-Attribute"); parameter.add(name); name = ParameterFactory.newInstance().create("Category", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add("Clustering"); parameter.add(name); name = ParameterFactory.newInstance().create("LinkFilter", LinkQuery.class); syntax = SyntaxCheckerFactory.newInstance().create(0, 1, null, LinkQuery.class); name.setRestrictions(syntax); parameter.add(name); name = ParameterFactory.newInstance().create("ActorFilter", ActorQuery.class); syntax = SyntaxCheckerFactory.newInstance().create(0, 1, null, ActorQuery.class); name.setRestrictions(syntax); parameter.add(name); name = ParameterFactory.newInstance().create("SourceAppendGraphID", Boolean.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, Boolean.class); name.setRestrictions(syntax); name.add(false); parameter.add(name); name = ParameterFactory.newInstance().create("Mode", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add("tag"); parameter.add(name); name = ParameterFactory.newInstance().create("SourceProperty", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add("Property"); parameter.add(name); name = ParameterFactory.newInstance().create("DestinationProperty", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add("Property"); parameter.add(name); name = ParameterFactory.newInstance().create("Clusterer", Class.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, Class.class); name.setRestrictions(syntax); name.add(weka.classifiers.meta.AdaBoostM1.class); parameter.add(name); name = ParameterFactory.newInstance().create("Options", String.class); syntax = SyntaxCheckerFactory.newInstance().create(1, 1, null, String.class); name.setRestrictions(syntax); name.add(""); parameter.add(name); } @Override public void execute(Graph g) { ActorByMode mode = (ActorByMode) ActorQueryFactory.newInstance().create("ActorByMode"); mode.buildQuery((String) parameter.get("GroundMode").get(), ".*", false); try { Clusterer clusterer = (Clusterer) ((Class) parameter.get("Clusterer").get()).newInstance(); String[] options = ((String) parameter.get("Options").get()).split("\\s+"); ((OptionHandler) clusterer).setOptions(options); Iterator<Actor> actor = AlgorithmMacros.filterActor(parameter, g, mode, null, null); Instances dataSet = null; while (actor.hasNext()) { Actor a = actor.next(); Property property = a.getProperty( AlgorithmMacros.getSourceID(parameter, g, (String) parameter.get("SourceProperty").get())); if (!property.getValue().isEmpty()) { Instance value = (Instance) property.getValue().get(0); if ((dataSet == null) && (value.dataset() != null)) { FastVector attributes = new FastVector(); for (int i = 0; i < value.dataset().numAttributes(); ++i) { attributes.addElement(value.dataset().attribute(i)); } dataSet = new Instances("Clustering", attributes, 1000); } else if ((dataSet == null)) { FastVector attributes = new FastVector(); for (int i = 0; i < value.numAttributes(); ++i) { Attribute element = new Attribute(Integer.toString(i)); attributes.addElement(element); } dataSet = new Instances("Clustering", attributes, 1000); } dataSet.add(value); } } clusterer.buildClusterer(dataSet); actor = AlgorithmMacros.filterActor(parameter, g, mode, null, null); HashMap<Integer, Graph> clusters = new HashMap<Integer, Graph>(); while (actor.hasNext()) { Actor a = actor.next(); Property property = a.getProperty( AlgorithmMacros.getSourceID(parameter, g, (String) parameter.get("SourceProperty").get())); if (!property.getValue().isEmpty()) { Instance instance = (Instance) property.getValue().get(0); double[] cluster = new double[] {}; try { cluster = clusterer.distributionForInstance(instance); } catch (Exception ex) { Logger.getLogger(WekaClassifierClusterer.class.getName()).log(Level.SEVERE, "ClusterInstance on clusterer failed", ex); } Property clusterProperty = PropertyFactory.newInstance().create("BasicProperty", AlgorithmMacros.getDestID(parameter, g, (String) parameter.get("DestinationProperty").get()), (new double[] {}).getClass()); clusterProperty.add(cluster); a.add(clusterProperty); } } } catch (InstantiationException ex) { Logger.getLogger(WekaClassifierClusterer.class.getName()).log(Level.SEVERE, null, ex); } catch (IllegalAccessException ex) { Logger.getLogger(WekaClassifierClusterer.class.getName()).log(Level.SEVERE, null, ex); } catch (Exception ex) { Logger.getLogger(WekaClassifierClusterer.class.getName()).log(Level.SEVERE, null, ex); } } @Override public List<IODescriptor> getInputType() { return input; } @Override public List<IODescriptor> getOutputType() { return output; } @Override public Properties getParameter() { return parameter; } @Override public Parameter getParameter(String param) { return parameter.get(param); } /** * Parameter:<br/> * <br/> * <ul> * <li/><b>name</b>: name of this Algorithm. Default is 'Weka Classifier Clustering Algorithm' * <li/><b>class</b>: class of the clusterer. Default is 'weka.clusterers.Cobweb' * <li/><b>options</b>: string of options for this clusterer. Default is '' * <li/><b>instancesProperty</b>: ID of the graph property containing the * Instances object. Deafult is 'AudioFile' * <li/><b>actorType</b>: mode of the actor containing the Instance property to * be clustered. Default is 'User' * <li/><b>actorProperty</b>: ID of the property where Instance objects are stored. * Default is 'AudioFile' * <li/><b>destinationProperty</b>: ID of the property to create on each actor. * Deafult is 'clusterID' * <li/><b>storeClassifier</b>: is the classifier to be stored on the graph. * Default is 'false' * <li/><b>classifierProperty</b>: property ID for storing the built classifier. * Deafult is 'clusterer' * </ul> * @param map parameters to be loaded - may be null. */ public void init(Properties map) { if (parameter.check(map)) { parameter.merge(map); IODescriptor desc = IODescriptorFactory.newInstance().create(Type.ACTOR_PROPERTY, (String) parameter.get("Name").get(), (String) parameter.get("Mode").get(), null, (String) parameter.get("SourceProperty").get(), "", (Boolean) parameter.get("SourceAppendGraphID").get()); input.add(desc); desc = IODescriptorFactory.newInstance().create(Type.ACTOR_PROPERTY, (String) parameter.get("Name").get(), (String) parameter.get("Mode").get(), null, (String) parameter.get("DestinationProperty").get(), "", (Boolean) parameter.get("DestinationAppendGraphID").get()); output.add(desc); desc = IODescriptorFactory.newInstance().create(Type.GRAPH, (String) parameter.get("Name").get(), (String) parameter.get("GraphIDPrefix").get(), null, null, "", true); output.add(desc); } } public WekaProbablisticClusterer prototype() { return new WekaProbablisticClusterer(); } }