Java tutorial
/* * * JAQPOT Quattro * * JAQPOT Quattro and the components shipped with it, in particular: * (i) JaqpotCoreServices * (ii) JaqpotAlgorithmServices * (iii) JaqpotDB * (iv) JaqpotDomain * (v) JaqpotEAR * are licensed by GPL v3 as specified hereafter. Additional components may ship * with some other licence as will be specified therein. * * Copyright (C) 2014-2015 KinkyDesign (Charalampos Chomenidis, Pantelis Sopasakis) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * Source code: * The source code of JAQPOT Quattro is available on github at: * https://github.com/KinkyDesign/JaqpotQuattro * All source files of JAQPOT Quattro that are stored on github are licensed * with the aforementioned licence. */ package org.jaqpot.algorithms.resource; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.ObjectInput; import java.io.ObjectInputStream; import java.io.ObjectOutput; import java.io.ObjectOutputStream; import java.lang.reflect.Field; import java.util.ArrayList; import java.util.Arrays; import java.util.Base64; import java.util.HashMap; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.TreeMap; import java.util.logging.Level; import java.util.logging.Logger; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; import javax.ws.rs.Consumes; import javax.ws.rs.POST; import javax.ws.rs.Path; import javax.ws.rs.Produces; import javax.ws.rs.core.MediaType; import javax.ws.rs.core.Response; import libsvm.svm_model; import libsvm.svm_node; import org.jaqpot.algorithms.dto.jpdi.PredictionRequest; import org.jaqpot.algorithms.dto.jpdi.PredictionResponse; import org.jaqpot.algorithms.dto.jpdi.TrainingRequest; import org.jaqpot.algorithms.dto.jpdi.TrainingResponse; import org.jaqpot.algorithms.model.WekaModel; import org.jaqpot.algorithms.pmml.PmmlUtils; import org.jaqpot.algoriths.weka.InstanceUtils; import weka.classifiers.Classifier; import weka.classifiers.functions.LibSVM; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.SelectedTag; /** * * @author Charalampos Chomenidis * @author Pantelis Sopasakis */ @Path("svm") @Consumes(MediaType.APPLICATION_JSON) @Produces(MediaType.APPLICATION_JSON) public class WekaSVM { private final Double _gamma = 1.50, _cost = 100.0, _epsilon = 0.100, _coeff0 = 0.0, _nu = 0.5, _loss = 0.1; private final Integer _cacheSize = 250007, _degree = 3; private final String _kernel = "RBF"; private final String _type = "NU_SVR"; @POST @Path("training") public Response training(TrainingRequest request) { try { if (request.getDataset().getDataEntry().isEmpty() || request.getDataset().getDataEntry().get(0).getValues().isEmpty()) { return Response.status(Response.Status.BAD_REQUEST) .entity("Dataset is empty. Cannot train model on empty dataset.").build(); } List<String> features = request.getDataset().getDataEntry().stream().findFirst().get().getValues() .keySet().stream().collect(Collectors.toList()); Instances data = InstanceUtils.createFromDataset(request.getDataset(), request.getPredictionFeature()); Map<String, Object> parameters = request.getParameters() != null ? request.getParameters() : new HashMap<>(); LibSVM regressor = new LibSVM(); Double epsilon = Double.parseDouble(parameters.getOrDefault("epsilon", _epsilon).toString()); Double cacheSize = Double.parseDouble(parameters.getOrDefault("cacheSize", _cacheSize).toString()); Double gamma = Double.parseDouble(parameters.getOrDefault("gamma", _gamma).toString()); Double coeff0 = Double.parseDouble(parameters.getOrDefault("coeff0", _coeff0).toString()); Double cost = Double.parseDouble(parameters.getOrDefault("cost", _cost).toString()); Double nu = Double.parseDouble(parameters.getOrDefault("nu", _nu).toString()); Double loss = Double.parseDouble(parameters.getOrDefault("loss", _loss).toString()); Integer degree = Integer.parseInt(parameters.getOrDefault("degree", _degree).toString()); regressor.setEps(epsilon); regressor.setCacheSize(cacheSize); regressor.setDegree(degree); regressor.setCost(cost); regressor.setGamma(gamma); regressor.setCoef0(coeff0); regressor.setNu(nu); regressor.setLoss(loss); Integer svm_kernel = null; String kernel = parameters.getOrDefault("kernel", _kernel).toString(); if (kernel.equalsIgnoreCase("rbf")) { svm_kernel = LibSVM.KERNELTYPE_RBF; } else if (kernel.equalsIgnoreCase("polynomial")) { svm_kernel = LibSVM.KERNELTYPE_POLYNOMIAL; } else if (kernel.equalsIgnoreCase("linear")) { svm_kernel = LibSVM.KERNELTYPE_LINEAR; } else if (kernel.equalsIgnoreCase("sigmoid")) { svm_kernel = LibSVM.KERNELTYPE_SIGMOID; } regressor.setKernelType(new SelectedTag(svm_kernel, LibSVM.TAGS_KERNELTYPE)); Integer svm_type = null; String type = parameters.getOrDefault("type", _type).toString(); if (type.equalsIgnoreCase("NU_SVR")) { svm_type = LibSVM.SVMTYPE_NU_SVR; } else if (type.equalsIgnoreCase("NU_SVC")) { svm_type = LibSVM.SVMTYPE_NU_SVC; } else if (type.equalsIgnoreCase("C_SVC")) { svm_type = LibSVM.SVMTYPE_C_SVC; } else if (type.equalsIgnoreCase("EPSILON_SVR")) { svm_type = LibSVM.SVMTYPE_EPSILON_SVR; } else if (type.equalsIgnoreCase("ONE_CLASS_SVM")) { svm_type = LibSVM.SVMTYPE_ONE_CLASS_SVM; } regressor.setSVMType(new SelectedTag(svm_type, LibSVM.TAGS_SVMTYPE)); regressor.buildClassifier(data); WekaModel model = new WekaModel(); model.setClassifier(regressor); Map<String, Double> options = new HashMap<>(); options.put("gamma", gamma); options.put("coeff0", coeff0); options.put("degree", new Double(degree.toString())); Field modelField = LibSVM.class.getDeclaredField("m_Model"); modelField.setAccessible(true); svm_model svmModel = (svm_model) modelField.get(regressor); double[][] coefs = svmModel.sv_coef; List<Double> coefsList = IntStream.range(0, coefs[0].length).mapToObj(i -> coefs[0][i]) .collect(Collectors.toList()); svm_node[][] nodes = svmModel.SV; List<Map<Integer, Double>> vectors = IntStream.range(0, nodes.length).mapToObj(i -> { Map<Integer, Double> node = new TreeMap<>(); Arrays.stream(nodes[i]).forEach(n -> node.put(n.index, n.value)); return node; }).collect(Collectors.toList()); String pmml = PmmlUtils.createSVMModel(features, request.getPredictionFeature(), "SVM", kernel, svm_type, options, coefsList, vectors); TrainingResponse response = new TrainingResponse(); ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(baos); out.writeObject(model); String base64Model = Base64.getEncoder().encodeToString(baos.toByteArray()); response.setRawModel(base64Model); List<String> independentFeatures = features.stream() .filter(feature -> !feature.equals(request.getPredictionFeature())) .collect(Collectors.toList()); response.setIndependentFeatures(independentFeatures); response.setPmmlModel(pmml); response.setAdditionalInfo(request.getPredictionFeature()); response.setPredictedFeatures( Arrays.asList("Weka SVM prediction of " + request.getPredictionFeature())); return Response.ok(response).build(); } catch (Exception ex) { Logger.getLogger(WekaSVM.class.getName()).log(Level.SEVERE, null, ex); return Response.status(Response.Status.INTERNAL_SERVER_ERROR).entity(ex.getMessage()).build(); } } @POST @Path("prediction") public Response prediction(PredictionRequest request) { try { if (request.getDataset().getDataEntry().isEmpty() || request.getDataset().getDataEntry().get(0).getValues().isEmpty()) { return Response.status(Response.Status.BAD_REQUEST) .entity("Dataset is empty. Cannot make predictions on empty dataset.").build(); } String base64Model = (String) request.getRawModel(); byte[] modelBytes = Base64.getDecoder().decode(base64Model); ByteArrayInputStream bais = new ByteArrayInputStream(modelBytes); ObjectInput in = new ObjectInputStream(bais); WekaModel model = (WekaModel) in.readObject(); Classifier classifier = model.getClassifier(); Instances data = InstanceUtils.createFromDataset(request.getDataset()); String dependentFeature = (String) request.getAdditionalInfo(); data.insertAttributeAt(new Attribute(dependentFeature), data.numAttributes()); data.setClass(data.attribute(dependentFeature)); List<LinkedHashMap<String, Object>> predictions = new ArrayList<>(); // data.stream().forEach(instance -> { // try { // double prediction = classifier.classifyInstance(instance); // Map<String, Object> predictionMap = new HashMap<>(); // predictionMap.put("Weka SVM prediction of " + dependentFeature, prediction); // predictions.add(predictionMap); // } catch (Exception ex) { // Logger.getLogger(WekaSVM.class.getName()).log(Level.SEVERE, null, ex); // } // }); for (int i = 0; i < data.numInstances(); i++) { Instance instance = data.instance(i); try { double prediction = classifier.classifyInstance(instance); LinkedHashMap<String, Object> predictionMap = new LinkedHashMap<>(); predictionMap.put("Weka SVM prediction of " + dependentFeature, prediction); predictions.add(predictionMap); } catch (Exception ex) { Logger.getLogger(WekaMLR.class.getName()).log(Level.SEVERE, null, ex); return Response.status(Response.Status.BAD_REQUEST) .entity("Error while gettting predictions. " + ex.getMessage()).build(); } } PredictionResponse response = new PredictionResponse(); response.setPredictions(predictions); return Response.ok(response).build(); } catch (Exception ex) { Logger.getLogger(WekaSVM.class.getName()).log(Level.SEVERE, null, ex); return Response.status(Response.Status.INTERNAL_SERVER_ERROR).entity(ex.getMessage()).build(); } } }