org.gitools.analysis.groupcomparison.format.math33Preview.Combinations.java Source code

Java tutorial

Introduction

Here is the source code for org.gitools.analysis.groupcomparison.format.math33Preview.Combinations.java

Source

/*
 * #%L
 * org.gitools.analysis
 * %%
 * Copyright (C) 2013 - 2014 Universitat Pompeu Fabra - Biomedical Genomics group
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the 
 * License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public 
 * License along with this program.  If not, see
 * <http://www.gnu.org/licenses/gpl-3.0.html>.
 * #L%
 */
package org.gitools.analysis.groupcomparison.format.math33Preview;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.ArithmeticUtils;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 * Utility to create <a href="http://en.wikipedia.org/wiki/Combination">
 * combinations</a> {@code (n, k)} of {@code k} elements in a set of
 * {@code n} elements.
 *
 * @version $Id$
 * @since 3.3
 */
public class Combinations implements Iterable<int[]> {
    /**
     * Size of the set from which combinations are drawn.
     */
    private final int n;
    /**
     * Number of elements in each combination.
     */
    private final int k;
    /**
     * Iteration order.
     */
    private final IterationOrder iterationOrder;

    /**
     * Describes the type of iteration performed by the
     * {@link #iterator() iterator}.
     */
    private static enum IterationOrder {
        /**
         * Lexicographic order.
         */
        LEXICOGRAPHIC
    }

    /**
     * Creates an instance whose range is the k-element subsets of
     * {0, ..., n - 1} represented as {@code int[]} arrays.
     * <p>
     * The iteration order is lexicographic: the arrays returned by the
     * {@link #iterator() iterator} are sorted in descending order and
     * they are visited in lexicographic order with significance from
     * right to left.
     * For example, {@code new Combinations(4, 2).iterator()} returns
     * an iterator that will generate the following sequence of arrays
     * on successive calls to
     * {@code next()}:<br/>
     * {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
     * </p>
     * If {@code k == 0} an iterator containing an empty array is returned;
     * if {@code k == n} an iterator containing [0, ..., n - 1] is returned.
     *
     * @param n Size of the set from which subsets are selected.
     * @param k Size of the subsets to be enumerated.
     * @throws org.apache.commons.math3.exception.NotPositiveException      if {@code n < 0}.
     * @throws org.apache.commons.math3.exception.NumberIsTooLargeException if {@code k > n}.
     */
    public Combinations(int n, int k) {
        this(n, k, IterationOrder.LEXICOGRAPHIC);
    }

    /**
     * Creates an instance whose range is the k-element subsets of
     * {0, ..., n - 1} represented as {@code int[]} arrays.
     * <p>
     * If the {@code iterationOrder} argument is set to
     * {@link IterationOrder#LEXICOGRAPHIC}, the arrays returned by the
     * {@link #iterator() iterator} are sorted in descending order and
     * they are visited in lexicographic order with significance from
     * right to left.
     * For example, {@code new Combinations(4, 2).iterator()} returns
     * an iterator that will generate the following sequence of arrays
     * on successive calls to
     * {@code next()}:<br/>
     * {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
     * </p>
     * If {@code k == 0} an iterator containing an empty array is returned;
     * if {@code k == n} an iterator containing [0, ..., n - 1] is returned.
     *
     * @param n              Size of the set from which subsets are selected.
     * @param k              Size of the subsets to be enumerated.
     * @param iterationOrder Specifies the {@link #iterator() iteration order}.
     * @throws org.apache.commons.math3.exception.NotPositiveException      if {@code n < 0}.
     * @throws org.apache.commons.math3.exception.NumberIsTooLargeException if {@code k > n}.
     */
    private Combinations(int n, int k, IterationOrder iterationOrder) {
        CombinatoricsUtils.checkBinomial(n, k);
        this.n = n;
        this.k = k;
        this.iterationOrder = iterationOrder;
    }

    /**
     * Gets the size of the set from which combinations are drawn.
     *
     * @return the size of the universe.
     */
    public int getN() {
        return n;
    }

    /**
     * Gets the number of elements in each combination.
     *
     * @return the size of the subsets to be enumerated.
     */
    public int getK() {
        return k;
    }

    /**
     * {@inheritDoc}
     */
    public Iterator<int[]> iterator() {
        if (k == 0 || k == n) {
            return new SingletonIterator(MathArrays.natural(k));
        }

        switch (iterationOrder) {
        case LEXICOGRAPHIC:
            return new LexicographicIterator(n, k);
        default:
            throw new MathInternalError(); // Should never happen.
        }
    }

    /**
     * Defines a lexicographic ordering of combinations.
     * The returned comparator allows to compare any two combinations
     * that can be produced by this instance's {@link #iterator() iterator}.
     * Its {@code compare(int[], int[])} method will throw exceptions if
     * passed combinations that are inconsistent with this instance:
     * <ul>
     * <li>{@code DimensionMismatchException} if the array lengths are not
     * equal to {@code k},</li>
     * <li>{@code OutOfRangeException} if an element of the array is not
     * within the interval [0, {@code n}).</li>
     * </ul>
     *
     * @return a lexicographic comparator.
     */
    public Comparator<int[]> comparator() {
        return new LexicographicComparator(n, k);
    }

    /**
     * Lexicographic combinations iterator.
     * <p>
     * Implementation follows Algorithm T in <i>The Art of Computer Programming</i>
     * Internet Draft (PRE-FASCICLE 3A), "A Draft of Section 7.2.1.3 Generating All
     * Combinations</a>, D. Knuth, 2004.</p>
     * <p>
     * The degenerate cases {@code k == 0} and {@code k == n} are NOT handled by this
     * implementation.  If constructor arguments satisfy {@code k == 0}
     * or {@code k >= n}, no exception is generated, but the iterator is empty.
     * </p>
     */
    private static class LexicographicIterator implements Iterator<int[]> {
        /**
         * Size of subsets returned by the iterator
         */
        private final int k;

        /**
         * c[1], ..., c[k] stores the next combination; c[k + 1], c[k + 2] are
         * sentinels.
         * <p>
         * Note that c[0] is "wasted" but this makes it a little easier to
         * follow the code.
         * </p>
         */
        private final int[] c;

        /**
         * Return value for {@link #hasNext()}
         */
        private boolean more = true;

        /**
         * Marker: smallest index such that c[j + 1] > j
         */
        private int j;

        /**
         * Construct a CombinationIterator to enumerate k-sets from n.
         * <p>
         * NOTE: If {@code k === 0} or {@code k >= n}, the Iterator will be empty
         * (that is, {@link #hasNext()} will return {@code false} immediately.
         * </p>
         *
         * @param n size of the set from which subsets are enumerated
         * @param k size of the subsets to enumerate
         */
        public LexicographicIterator(int n, int k) {
            this.k = k;
            c = new int[k + 3];
            if (k == 0 || k >= n) {
                more = false;
                return;
            }
            // Initialize c to start with lexicographically first k-set
            for (int i = 1; i <= k; i++) {
                c[i] = i - 1;
            }
            // Initialize sentinels
            c[k + 1] = n;
            c[k + 2] = 0;
            j = k; // Set up invariant: j is smallest index such that c[j + 1] > j
        }

        /**
         * {@inheritDoc}
         */
        public boolean hasNext() {
            return more;
        }

        /**
         * {@inheritDoc}
         */
        public int[] next() {
            if (!more) {
                throw new NoSuchElementException();
            }
            // Copy return value (prepared by last activation)
            final int[] ret = new int[k];
            System.arraycopy(c, 1, ret, 0, k);

            // Prepare next iteration
            // T2 and T6 loop
            int x = 0;
            if (j > 0) {
                x = j;
                c[j] = x;
                j--;
                return ret;
            }
            // T3
            if (c[1] + 1 < c[2]) {
                c[1]++;
                return ret;
            } else {
                j = 2;
            }
            // T4
            boolean stepDone = false;
            while (!stepDone) {
                c[j - 1] = j - 2;
                x = c[j] + 1;
                if (x == c[j + 1]) {
                    j++;
                } else {
                    stepDone = true;
                }
            }
            // T5
            if (j > k) {
                more = false;
                return ret;
            }
            // T6
            c[j] = x;
            j--;
            return ret;
        }

        /**
         * Not supported.
         */
        public void remove() {
            throw new UnsupportedOperationException();
        }
    }

    /**
     * Iterator with just one element to handle degenerate cases (full array,
     * empty array) for combination iterator.
     */
    private static class SingletonIterator implements Iterator<int[]> {
        /**
         * Singleton array
         */
        private final int[] singleton;
        /**
         * True on initialization, false after first call to next
         */
        private boolean more = true;

        /**
         * Create a singleton iterator providing the given array.
         *
         * @param singleton array returned by the iterator
         */
        public SingletonIterator(final int[] singleton) {
            this.singleton = singleton;
        }

        /**
         * @return True until next is called the first time, then false
         */
        public boolean hasNext() {
            return more;
        }

        /**
         * @return the singleton in first activation; throws NSEE thereafter
         */
        public int[] next() {
            if (more) {
                more = false;
                return singleton;
            } else {
                throw new NoSuchElementException();
            }
        }

        /**
         * Not supported
         */
        public void remove() {
            throw new UnsupportedOperationException();
        }
    }

    /**
     * Defines the lexicographic ordering of combinations, using
     * the {@link #lexNorm(int[])} method.
     */
    private static class LexicographicComparator implements Comparator<int[]>, Serializable {
        /**
         * Serializable version identifier.
         */
        private static final long serialVersionUID = 20130906L;
        /**
         * Size of the set from which combinations are drawn.
         */
        private final int n;
        /**
         * Number of elements in each combination.
         */
        private final int k;

        /**
         * @param n Size of the set from which subsets are selected.
         * @param k Size of the subsets to be enumerated.
         */
        public LexicographicComparator(int n, int k) {
            this.n = n;
            this.k = k;
        }

        /**
         * {@inheritDoc}
         *
         * @throws DimensionMismatchException if the array lengths are not
         *                                    equal to {@code k}.
         * @throws OutOfRangeException        if an element of the array is not
         *                                    within the interval [0, {@code n}).
         */
        public int compare(int[] c1, int[] c2) {
            if (c1.length != k) {
                throw new DimensionMismatchException(c1.length, k);
            }
            if (c2.length != k) {
                throw new DimensionMismatchException(c2.length, k);
            }

            // Method "lexNorm" works with ordered arrays.
            final int[] c1s = MathArrays.copyOf(c1);
            Arrays.sort(c1s);
            final int[] c2s = MathArrays.copyOf(c2);
            Arrays.sort(c2s);

            final long v1 = lexNorm(c1s);
            final long v2 = lexNorm(c2s);

            if (v1 < v2) {
                return -1;
            } else if (v1 > v2) {
                return 1;
            } else {
                return 0;
            }
        }

        /**
         * Computes the value (in base 10) represented by the digit
         * (interpreted in base {@code n}) in the input array in reverse
         * order.
         * For example if {@code c} is {@code {3, 2, 1}}, and {@code n}
         * is 3, the method will return 18.
         *
         * @param c Input array.
         * @return the lexicographic norm.
         * @throws OutOfRangeException if an element of the array is not
         *                             within the interval [0, {@code n}).
         */
        private long lexNorm(int[] c) {
            long ret = 0;
            for (int i = 0; i < c.length; i++) {
                final int digit = c[i];
                if (digit < 0 || digit >= n) {
                    throw new OutOfRangeException(digit, 0, n - 1);
                }

                ret += c[i] * ArithmeticUtils.pow(n, i);
            }
            return ret;
        }
    }
}