org.aspectj.weaver.ResolvedType.java Source code

Java tutorial

Introduction

Here is the source code for org.aspectj.weaver.ResolvedType.java

Source

/* *******************************************************************
 * Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
 * All rights reserved. 
 * This program and the accompanying materials are made available 
 * under the terms of the Eclipse Public License v1.0 
 * which accompanies this distribution and is available at 
 * http://www.eclipse.org/legal/epl-v10.html 
 *  
 * Contributors: 
 *     PARC     initial implementation 
 *     Alexandre Vasseur    @AspectJ ITDs
 * ******************************************************************/

package org.aspectj.weaver;

import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;

import org.aspectj.bridge.IMessage;
import org.aspectj.bridge.ISourceLocation;
import org.aspectj.bridge.Message;
import org.aspectj.bridge.MessageUtil;
import org.aspectj.util.FuzzyBoolean;
import org.aspectj.weaver.AjAttribute.WeaverVersionInfo;
import org.aspectj.weaver.Iterators.Getter;
import org.aspectj.weaver.patterns.Declare;
import org.aspectj.weaver.patterns.PerClause;

public abstract class ResolvedType extends UnresolvedType implements AnnotatedElement {

    public static final ResolvedType[] EMPTY_RESOLVED_TYPE_ARRAY = new ResolvedType[0];
    public static final String PARAMETERIZED_TYPE_IDENTIFIER = "P";

    // Set temporarily during a type pattern match call - this currently used to hold the
    // annotations that may be attached to a type when it used as a parameter
    public ResolvedType[] temporaryAnnotationTypes;
    private ResolvedType[] resolvedTypeParams;
    private String binaryPath;

    protected World world;

    protected int bits;

    private static int AnnotationBitsInitialized = 0x0001;
    private static int AnnotationMarkedInherited = 0x0002;
    private static int MungersAnalyzed = 0x0004;
    private static int HasParentMunger = 0x0008;
    private static int TypeHierarchyCompleteBit = 0x0010;
    private static int GroovyObjectInitialized = 0x0020;
    private static int IsGroovyObject = 0x0040;
    private static int IsPrivilegedBitInitialized = 0x0080;
    private static int IsPrivilegedAspect = 0x0100;

    protected ResolvedType(String signature, World world) {
        super(signature);
        this.world = world;
    }

    protected ResolvedType(String signature, String signatureErasure, World world) {
        super(signature, signatureErasure);
        this.world = world;
    }

    @Override
    public int getSize() {
        return 1;
    }

    /**
     * Returns an iterator through ResolvedType objects representing all the direct supertypes of this type. That is, through the
     * superclass, if any, and all declared interfaces.
     */
    public final Iterator<ResolvedType> getDirectSupertypes() {
        Iterator<ResolvedType> interfacesIterator = Iterators.array(getDeclaredInterfaces());
        ResolvedType superclass = getSuperclass();
        if (superclass == null) {
            return interfacesIterator;
        } else {
            return Iterators.snoc(interfacesIterator, superclass);
        }
    }

    public abstract ResolvedMember[] getDeclaredFields();

    public abstract ResolvedMember[] getDeclaredMethods();

    public abstract ResolvedType[] getDeclaredInterfaces();

    public abstract ResolvedMember[] getDeclaredPointcuts();

    public boolean isCacheable() {
        return true;
    }

    /**
     * @return the superclass of this type, or null (if this represents a jlObject, primitive, or void)
     */
    public abstract ResolvedType getSuperclass();

    public abstract int getModifiers();

    public boolean canBeSeenBy(ResolvedType from) {
        int targetMods = getModifiers();
        if (Modifier.isPublic(targetMods)) {
            return true;
        }
        if (Modifier.isPrivate(targetMods)) {
            return false;
        }
        // isProtected() or isDefault()
        return getPackageName().equals(from.getPackageName());
    }

    // return true if this resolved type couldn't be found (but we know it's name maybe)
    public boolean isMissing() {
        return false;
    }

    // FIXME asc I wonder if in some circumstances MissingWithKnownSignature
    // should not be considered
    // 'really' missing as some code can continue based solely on the signature
    public static boolean isMissing(UnresolvedType unresolved) {
        if (unresolved instanceof ResolvedType) {
            ResolvedType resolved = (ResolvedType) unresolved;
            return resolved.isMissing();
        } else {
            return (unresolved == MISSING);
        }
    }

    @Override
    public ResolvedType[] getAnnotationTypes() {
        return EMPTY_RESOLVED_TYPE_ARRAY;
    }

    @Override
    public AnnotationAJ getAnnotationOfType(UnresolvedType ofType) {
        return null;
    }

    // public final UnresolvedType getSuperclass(World world) {
    // return getSuperclass();
    // }

    // This set contains pairs of types whose signatures are concatenated
    // together, this means with a fast lookup we can tell if two types
    // are equivalent.
    protected static Set<String> validBoxing = new HashSet<String>();

    static {
        validBoxing.add("Ljava/lang/Byte;B");
        validBoxing.add("Ljava/lang/Character;C");
        validBoxing.add("Ljava/lang/Double;D");
        validBoxing.add("Ljava/lang/Float;F");
        validBoxing.add("Ljava/lang/Integer;I");
        validBoxing.add("Ljava/lang/Long;J");
        validBoxing.add("Ljava/lang/Short;S");
        validBoxing.add("Ljava/lang/Boolean;Z");
        validBoxing.add("BLjava/lang/Byte;");
        validBoxing.add("CLjava/lang/Character;");
        validBoxing.add("DLjava/lang/Double;");
        validBoxing.add("FLjava/lang/Float;");
        validBoxing.add("ILjava/lang/Integer;");
        validBoxing.add("JLjava/lang/Long;");
        validBoxing.add("SLjava/lang/Short;");
        validBoxing.add("ZLjava/lang/Boolean;");
    }

    // utilities
    public ResolvedType getResolvedComponentType() {
        return null;
    }

    public World getWorld() {
        return world;
    }

    // ---- things from object

    @Override
    public boolean equals(Object other) {
        if (other instanceof ResolvedType) {
            return this == other;
        } else {
            return super.equals(other);
        }
    }

    // ---- difficult things

    /**
     * returns an iterator through all of the fields of this type, in order for checking from JVM spec 2ed 5.4.3.2. This means that
     * the order is
     * <p/>
     * <ul>
     * <li>fields from current class</li>
     * <li>recur into direct superinterfaces</li>
     * <li>recur into superclass</li>
     * </ul>
     * <p/>
     * We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
     */
    public Iterator<ResolvedMember> getFields() {
        final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
        Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
            @Override
            public Iterator<ResolvedType> get(ResolvedType o) {
                return dupFilter.filter(o.getDirectSupertypes());
            }
        };
        return Iterators.mapOver(Iterators.recur(this, typeGetter), FieldGetterInstance);
    }

    /**
     * returns an iterator through all of the methods of this type, in order for checking from JVM spec 2ed 5.4.3.3. This means that
     * the order is
     * <p/>
     * <ul>
     * <li>methods from current class</li>
     * <li>recur into superclass, all the way up, not touching interfaces</li>
     * <li>recur into all superinterfaces, in some unspecified order (but those 'closest' to this type are first)</li>
     * </ul>
     * <p/>
     * 
     * @param wantGenerics is true if the caller would like all generics information, otherwise those methods are collapsed to their
     *        erasure
     */
    public Iterator<ResolvedMember> getMethods(boolean wantGenerics, boolean wantDeclaredParents) {
        return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterInstance);
    }

    public Iterator<ResolvedMember> getMethodsIncludingIntertypeDeclarations(boolean wantGenerics,
            boolean wantDeclaredParents) {
        return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterWithItdsInstance);
    }

    /**
     * An Iterators.Getter that returns an iterator over all methods declared on some resolved type.
     */
    private static class MethodGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
        @Override
        public Iterator<ResolvedMember> get(ResolvedType type) {
            return Iterators.array(type.getDeclaredMethods());
        }
    }

    /**
     * An Iterators.Getter that returns an iterator over all pointcuts declared on some resolved type.
     */
    private static class PointcutGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
        @Override
        public Iterator<ResolvedMember> get(ResolvedType o) {
            return Iterators.array(o.getDeclaredPointcuts());
        }
    }

    // OPTIMIZE could cache the result of discovering ITDs

    // Getter that returns all declared methods for a type through an iterator - including intertype declarations
    private static class MethodGetterIncludingItds implements Iterators.Getter<ResolvedType, ResolvedMember> {
        @Override
        public Iterator<ResolvedMember> get(ResolvedType type) {
            ResolvedMember[] methods = type.getDeclaredMethods();
            if (type.interTypeMungers != null) {
                int additional = 0;
                for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
                    ResolvedMember rm = typeTransformer.getSignature();
                    // BUG won't this include fields? When we are looking for methods
                    if (rm != null) { // new parent type munger can have null signature
                        additional++;
                    }
                }
                if (additional > 0) {
                    ResolvedMember[] methods2 = new ResolvedMember[methods.length + additional];
                    System.arraycopy(methods, 0, methods2, 0, methods.length);
                    additional = methods.length;
                    for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
                        ResolvedMember rm = typeTransformer.getSignature();
                        if (rm != null) { // new parent type munger can have null signature
                            methods2[additional++] = typeTransformer.getSignature();
                        }
                    }
                    methods = methods2;
                }
            }
            return Iterators.array(methods);
        }
    }

    /**
     * An Iterators.Getter that returns an iterator over all fields declared on some resolved type.
     */
    private static class FieldGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
        @Override
        public Iterator<ResolvedMember> get(ResolvedType type) {
            return Iterators.array(type.getDeclaredFields());
        }
    }

    private final static MethodGetter MethodGetterInstance = new MethodGetter();
    private final static MethodGetterIncludingItds MethodGetterWithItdsInstance = new MethodGetterIncludingItds();
    private final static PointcutGetter PointcutGetterInstance = new PointcutGetter();
    private final static FieldGetter FieldGetterInstance = new FieldGetter();

    /**
     * Return an iterator over the types in this types hierarchy - starting with this type first, then all superclasses up to Object
     * and then all interfaces (starting with those 'nearest' this type).
     * 
     * @param wantGenerics true if the caller wants full generic information
     * @param wantDeclaredParents true if the caller even wants those parents introduced via declare parents
     * @return an iterator over all types in the hierarchy of this type
     */
    public Iterator<ResolvedType> getHierarchy() {
        return getHierarchy(false, false);
    }

    public Iterator<ResolvedType> getHierarchy(final boolean wantGenerics, final boolean wantDeclaredParents) {

        final Iterators.Getter<ResolvedType, ResolvedType> interfaceGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
            List<String> alreadySeen = new ArrayList<String>(); // Strings are signatures (ResolvedType.getSignature())

            @Override
            public Iterator<ResolvedType> get(ResolvedType type) {
                ResolvedType[] interfaces = type.getDeclaredInterfaces();

                // remove interfaces introduced by declare parents
                // relatively expensive but hopefully uncommon
                if (!wantDeclaredParents && type.hasNewParentMungers()) {
                    // Throw away interfaces from that array if they were decp'd onto here
                    List<Integer> forRemoval = new ArrayList<Integer>();
                    for (ConcreteTypeMunger munger : type.interTypeMungers) {
                        if (munger.getMunger() != null) {
                            ResolvedTypeMunger m = munger.getMunger();
                            if (m.getKind() == ResolvedTypeMunger.Parent) {
                                ResolvedType newType = ((NewParentTypeMunger) m).getNewParent();
                                if (!wantGenerics && newType.isParameterizedOrGenericType()) {
                                    newType = newType.getRawType();
                                }
                                for (int ii = 0; ii < interfaces.length; ii++) {
                                    ResolvedType iface = interfaces[ii];
                                    if (!wantGenerics && iface.isParameterizedOrGenericType()) {
                                        iface = iface.getRawType();
                                    }
                                    if (newType.getSignature().equals(iface.getSignature())) { // pr171953
                                        forRemoval.add(ii);
                                    }
                                }
                            }
                        }
                    }
                    // Found some to remove from those we are going to iterate over
                    if (forRemoval.size() > 0) {
                        ResolvedType[] interfaces2 = new ResolvedType[interfaces.length - forRemoval.size()];
                        int p = 0;
                        for (int ii = 0; ii < interfaces.length; ii++) {
                            if (!forRemoval.contains(ii)) {
                                interfaces2[p++] = interfaces[ii];
                            }
                        }
                        interfaces = interfaces2;
                    }
                }
                return new Iterators.ResolvedTypeArrayIterator(interfaces, alreadySeen, wantGenerics);
            }
        };

        // If this type is an interface, there are only interfaces to walk
        if (this.isInterface()) {
            return new SuperInterfaceWalker(interfaceGetter, this);
        } else {
            SuperInterfaceWalker superInterfaceWalker = new SuperInterfaceWalker(interfaceGetter);
            Iterator<ResolvedType> superClassesIterator = new SuperClassWalker(this, superInterfaceWalker,
                    wantGenerics);
            // append() will check if the second iterator is empty before appending - but the types which the superInterfaceWalker
            // needs to visit are only accumulated whilst the superClassesIterator is in progress
            return Iterators.append1(superClassesIterator, superInterfaceWalker);
        }
    }

    /**
     * Return a list of methods, first those declared on this class, then those declared on the superclass (recurse) and then those
     * declared on the superinterfaces. This is expensive - use the getMethods() method if you can!
     */
    public List<ResolvedMember> getMethodsWithoutIterator(boolean includeITDs, boolean allowMissing,
            boolean genericsAware) {
        List<ResolvedMember> methods = new ArrayList<ResolvedMember>();
        Set<String> knowninterfaces = new HashSet<String>();
        addAndRecurse(knowninterfaces, methods, this, includeITDs, allowMissing, genericsAware);
        return methods;
    }

    /**
     * Return a list of the types in the hierarchy of this type, starting with this type. The order in the list is the superclasses
     * followed by the super interfaces.
     * 
     * @param genericsAware should the list include parameterized/generic types (if not, they will be collapsed to raw)?
     * @return list of resolvedtypes in this types hierarchy, including this type first
     */
    public List<ResolvedType> getHierarchyWithoutIterator(boolean includeITDs, boolean allowMissing,
            boolean genericsAware) {
        List<ResolvedType> types = new ArrayList<ResolvedType>();
        Set<String> visited = new HashSet<String>();
        recurseHierarchy(visited, types, this, includeITDs, allowMissing, genericsAware);
        return types;
    }

    private void addAndRecurse(Set<String> knowninterfaces, List<ResolvedMember> collector,
            ResolvedType resolvedType, boolean includeITDs, boolean allowMissing, boolean genericsAware) {
        // Add the methods declared on this type
        collector.addAll(Arrays.asList(resolvedType.getDeclaredMethods()));
        // now add all the inter-typed members too
        if (includeITDs && resolvedType.interTypeMungers != null) {
            for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
                ResolvedMember rm = typeTransformer.getSignature();
                if (rm != null) { // new parent type munger can have null signature
                    collector.add(typeTransformer.getSignature());
                }
            }
        }
        // BUG? interface type superclass is Object - is that correct?
        if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
            ResolvedType superType = resolvedType.getSuperclass();
            if (superType != null && !superType.isMissing()) {
                if (!genericsAware && superType.isParameterizedOrGenericType()) {
                    superType = superType.getRawType();
                }
                // Recurse if we are not at the top
                addAndRecurse(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
            }
        }
        // Go through the interfaces on the way back down
        ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
        for (int i = 0; i < interfaces.length; i++) {
            ResolvedType iface = interfaces[i];
            if (!genericsAware && iface.isParameterizedOrGenericType()) {
                iface = iface.getRawType();
            }
            // we need to know if it is an interface from Parent kind munger
            // as those are used for @AJ ITD and we precisely want to skip those
            boolean shouldSkip = false;
            for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
                ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
                if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
                        && ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
                ) {
                    shouldSkip = true;
                    break;
                }
            }

            // Do not do interfaces more than once
            if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
                knowninterfaces.add(iface.getSignature());
                if (allowMissing && iface.isMissing()) {
                    if (iface instanceof MissingResolvedTypeWithKnownSignature) {
                        ((MissingResolvedTypeWithKnownSignature) iface)
                                .raiseWarningOnMissingInterfaceWhilstFindingMethods();
                    }
                } else {
                    addAndRecurse(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
                }
            }
        }
    }

    /**
     * Recurse up a type hierarchy, first the superclasses then the super interfaces.
     */
    private void recurseHierarchy(Set<String> knowninterfaces, List<ResolvedType> collector,
            ResolvedType resolvedType, boolean includeITDs, boolean allowMissing, boolean genericsAware) {
        collector.add(resolvedType);
        if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
            ResolvedType superType = resolvedType.getSuperclass();
            if (superType != null && !superType.isMissing()) {
                if (!genericsAware && (superType.isParameterizedType() || superType.isGenericType())) {
                    superType = superType.getRawType();
                }
                // Recurse if we are not at the top
                recurseHierarchy(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
            }
        }
        // Go through the interfaces on the way back down
        ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
        for (int i = 0; i < interfaces.length; i++) {
            ResolvedType iface = interfaces[i];
            if (!genericsAware && (iface.isParameterizedType() || iface.isGenericType())) {
                iface = iface.getRawType();
            }
            // we need to know if it is an interface from Parent kind munger
            // as those are used for @AJ ITD and we precisely want to skip those
            boolean shouldSkip = false;
            for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
                ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
                if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
                        && ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
                ) {
                    shouldSkip = true;
                    break;
                }
            }

            // Do not do interfaces more than once
            if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
                knowninterfaces.add(iface.getSignature());
                if (allowMissing && iface.isMissing()) {
                    if (iface instanceof MissingResolvedTypeWithKnownSignature) {
                        ((MissingResolvedTypeWithKnownSignature) iface)
                                .raiseWarningOnMissingInterfaceWhilstFindingMethods();
                    }
                } else {
                    recurseHierarchy(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
                }
            }
        }
    }

    public ResolvedType[] getResolvedTypeParameters() {
        if (resolvedTypeParams == null) {
            resolvedTypeParams = world.resolve(typeParameters);
        }
        return resolvedTypeParams;
    }

    /**
     * described in JVM spec 2ed 5.4.3.2
     */
    public ResolvedMember lookupField(Member field) {
        Iterator<ResolvedMember> i = getFields();
        while (i.hasNext()) {
            ResolvedMember resolvedMember = i.next();
            if (matches(resolvedMember, field)) {
                return resolvedMember;
            }
            if (resolvedMember.hasBackingGenericMember() && field.getName().equals(resolvedMember.getName())) {
                // might be worth checking the member behind the parameterized member (see pr137496)
                if (matches(resolvedMember.getBackingGenericMember(), field)) {
                    return resolvedMember;
                }
            }
        }
        return null;
    }

    /**
     * described in JVM spec 2ed 5.4.3.3. Doesnt check ITDs.
     * 
     * <p>
     * Check the current type for the method. If it is not found, check the super class and any super interfaces. Taking care not to
     * process interfaces multiple times.
     */
    public ResolvedMember lookupMethod(Member m) {
        List<ResolvedType> typesTolookat = new ArrayList<ResolvedType>();
        typesTolookat.add(this);
        int pos = 0;
        while (pos < typesTolookat.size()) {
            ResolvedType type = typesTolookat.get(pos++);
            if (!type.isMissing()) {
                ResolvedMember[] methods = type.getDeclaredMethods();
                if (methods != null) {
                    for (int i = 0; i < methods.length; i++) {
                        ResolvedMember method = methods[i];
                        if (matches(method, m)) {
                            return method;
                        }
                        // might be worth checking the method behind the parameterized method (137496)
                        if (method.hasBackingGenericMember() && m.getName().equals(method.getName())) {
                            if (matches(method.getBackingGenericMember(), m)) {
                                return method;
                            }
                        }
                    }
                }
            }
            // Queue the superclass:
            ResolvedType superclass = type.getSuperclass();
            if (superclass != null) {
                typesTolookat.add(superclass);
            }
            // Queue any interfaces not already checked:
            ResolvedType[] superinterfaces = type.getDeclaredInterfaces();
            if (superinterfaces != null) {
                for (int i = 0; i < superinterfaces.length; i++) {
                    ResolvedType interf = superinterfaces[i];
                    if (!typesTolookat.contains(interf)) {
                        typesTolookat.add(interf);
                    }
                }
            }
        }
        return null;
    }

    /**
     * @param member the member to lookup in intertype declarations affecting this type
     * @return the real signature defined by any matching intertype declaration, otherwise null
     */
    public ResolvedMember lookupMethodInITDs(Member member) {
        for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
            if (matches(typeTransformer.getSignature(), member)) {
                return typeTransformer.getSignature();
            }
        }
        return null;
    }

    /**
     * return null if not found
     */
    private ResolvedMember lookupMember(Member m, ResolvedMember[] a) {
        for (int i = 0; i < a.length; i++) {
            ResolvedMember f = a[i];
            if (matches(f, m)) {
                return f;
            }
        }
        return null;
    }

    // Bug (1) Do callers expect ITDs to be involved in the lookup? or do they do their own walk over ITDs?
    /**
     * Looks for the first member in the hierarchy matching aMember. This method differs from lookupMember(Member) in that it takes
     * into account parameters which are type variables - which clearly an unresolved Member cannot do since it does not know
     * anything about type variables.
     */
    public ResolvedMember lookupResolvedMember(ResolvedMember aMember, boolean allowMissing,
            boolean eraseGenerics) {
        Iterator<ResolvedMember> toSearch = null;
        ResolvedMember found = null;
        if ((aMember.getKind() == Member.METHOD) || (aMember.getKind() == Member.CONSTRUCTOR)) {
            // toSearch = getMethodsWithoutIterator(true, allowMissing, !eraseGenerics).iterator();
            toSearch = getMethodsIncludingIntertypeDeclarations(!eraseGenerics, true);
        } else if (aMember.getKind() == Member.ADVICE) {
            return null;
        } else {
            assert aMember.getKind() == Member.FIELD;
            toSearch = getFields();
        }
        while (toSearch.hasNext()) {
            ResolvedMember candidate = toSearch.next();
            if (eraseGenerics) {
                if (candidate.hasBackingGenericMember()) {
                    candidate = candidate.getBackingGenericMember();
                }
            }
            // OPTIMIZE speed up matches? optimize order of checks
            if (candidate.matches(aMember, eraseGenerics)) {
                found = candidate;
                break;
            }
        }

        return found;
    }

    public static boolean matches(Member m1, Member m2) {
        if (m1 == null) {
            return m2 == null;
        }
        if (m2 == null) {
            return false;
        }

        // Check the names
        boolean equalNames = m1.getName().equals(m2.getName());
        if (!equalNames) {
            return false;
        }

        // Check the signatures
        boolean equalSignatures = m1.getSignature().equals(m2.getSignature());
        if (equalSignatures) {
            return true;
        }

        // If they aren't the same, we need to allow for covariance ... where
        // one sig might be ()LCar; and
        // the subsig might be ()LFastCar; - where FastCar is a subclass of Car
        boolean equalCovariantSignatures = m1.getParameterSignature().equals(m2.getParameterSignature());
        if (equalCovariantSignatures) {
            return true;
        }

        return false;
    }

    public static boolean conflictingSignature(Member m1, Member m2) {
        return conflictingSignature(m1, m2, true);
    }

    /**
     * Do the two members conflict?  Due to the change in 1.7.1, field itds on interfaces now act like 'default' fields - so types implementing
     * those fields get the field if they don't have it already, otherwise they keep what they have.  The conflict detection below had to be
     * altered.  Previously (<1.7.1) it is not a conflict if the declaring types are different.  With v2itds it may still be a conflict if the
     * declaring types are different.
     */
    public static boolean conflictingSignature(Member m1, Member m2, boolean v2itds) {
        if (m1 == null || m2 == null) {
            return false;
        }
        if (!m1.getName().equals(m2.getName())) {
            return false;
        }
        if (m1.getKind() != m2.getKind()) {
            return false;
        }
        if (m1.getKind() == Member.FIELD) {
            if (v2itds) {
                if (m1.getDeclaringType().equals(m2.getDeclaringType())) {
                    return true;
                }
            } else {
                return m1.getDeclaringType().equals(m2.getDeclaringType());
            }
        } else if (m1.getKind() == Member.POINTCUT) {
            return true;
        }

        UnresolvedType[] p1 = m1.getGenericParameterTypes();
        UnresolvedType[] p2 = m2.getGenericParameterTypes();
        if (p1 == null) {
            p1 = m1.getParameterTypes();
        }
        if (p2 == null) {
            p2 = m2.getParameterTypes();
        }
        int n = p1.length;
        if (n != p2.length) {
            return false;
        }

        for (int i = 0; i < n; i++) {
            if (!p1[i].equals(p2[i])) {
                return false;
            }
        }
        return true;
    }

    /**
     * returns an iterator through all of the pointcuts of this type, in order for checking from JVM spec 2ed 5.4.3.2 (as for
     * fields). This means that the order is
     * <p/>
     * <ul>
     * <li>pointcuts from current class</li>
     * <li>recur into direct superinterfaces</li>
     * <li>recur into superclass</li>
     * </ul>
     * <p/>
     * We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
     */
    public Iterator<ResolvedMember> getPointcuts() {
        final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
        // same order as fields
        Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
            @Override
            public Iterator<ResolvedType> get(ResolvedType o) {
                return dupFilter.filter(o.getDirectSupertypes());
            }
        };
        return Iterators.mapOver(Iterators.recur(this, typeGetter), PointcutGetterInstance);
    }

    public ResolvedPointcutDefinition findPointcut(String name) {
        for (Iterator<ResolvedMember> i = getPointcuts(); i.hasNext();) {
            ResolvedPointcutDefinition f = (ResolvedPointcutDefinition) i.next();
            // the ResolvedPointcutDefinition can be null if there are other problems that prevented its resolution
            if (f != null && name.equals(f.getName())) {
                return f;
            }
        }
        // pr120521
        if (!getOutermostType().equals(this)) {
            ResolvedType outerType = getOutermostType().resolve(world);
            ResolvedPointcutDefinition rpd = outerType.findPointcut(name);
            return rpd;
        }
        return null; // should we throw an exception here?
    }

    // all about collecting CrosscuttingMembers

    // ??? collecting data-structure, shouldn't really be a field
    public CrosscuttingMembers crosscuttingMembers;

    public CrosscuttingMembers collectCrosscuttingMembers(boolean shouldConcretizeIfNeeded) {
        crosscuttingMembers = new CrosscuttingMembers(this, shouldConcretizeIfNeeded);
        if (getPerClause() == null) {
            return crosscuttingMembers;
        }
        crosscuttingMembers.setPerClause(getPerClause());
        crosscuttingMembers.addShadowMungers(collectShadowMungers());
        // GENERICITDFIX
        // crosscuttingMembers.addTypeMungers(collectTypeMungers());
        crosscuttingMembers.addTypeMungers(getTypeMungers());
        // FIXME AV - skip but needed ?? or ??
        // crosscuttingMembers.addLateTypeMungers(getLateTypeMungers());
        crosscuttingMembers.addDeclares(collectDeclares(!this.doesNotExposeShadowMungers()));
        crosscuttingMembers.addPrivilegedAccesses(getPrivilegedAccesses());

        // System.err.println("collected cc members: " + this + ", " +
        // collectDeclares());
        return crosscuttingMembers;
    }

    public final List<Declare> collectDeclares(boolean includeAdviceLike) {
        if (!this.isAspect()) {
            return Collections.emptyList();
        }

        List<Declare> ret = new ArrayList<Declare>();
        // if (this.isAbstract()) {
        // for (Iterator i = getDeclares().iterator(); i.hasNext();) {
        // Declare dec = (Declare) i.next();
        // if (!dec.isAdviceLike()) ret.add(dec);
        // }
        //
        // if (!includeAdviceLike) return ret;

        if (!this.isAbstract()) {
            // ret.addAll(getDeclares());
            final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
            Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
                @Override
                public Iterator<ResolvedType> get(ResolvedType o) {
                    return dupFilter.filter((o).getDirectSupertypes());
                }
            };
            Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);

            while (typeIterator.hasNext()) {
                ResolvedType ty = typeIterator.next();
                // System.out.println("super: " + ty + ", " + );
                for (Iterator<Declare> i = ty.getDeclares().iterator(); i.hasNext();) {
                    Declare dec = i.next();
                    if (dec.isAdviceLike()) {
                        if (includeAdviceLike) {
                            ret.add(dec);
                        }
                    } else {
                        ret.add(dec);
                    }
                }
            }
        }

        return ret;
    }

    private final List<ShadowMunger> collectShadowMungers() {
        if (!this.isAspect() || this.isAbstract() || this.doesNotExposeShadowMungers()) {
            return Collections.emptyList();
        }

        List<ShadowMunger> acc = new ArrayList<ShadowMunger>();
        final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
        Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
            @Override
            public Iterator<ResolvedType> get(ResolvedType o) {
                return dupFilter.filter((o).getDirectSupertypes());
            }
        };
        Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);

        while (typeIterator.hasNext()) {
            ResolvedType ty = typeIterator.next();
            acc.addAll(ty.getDeclaredShadowMungers());
        }

        return acc;
    }

    public void addParent(ResolvedType newParent) {
        // Nothing to do for anything except a ReferenceType
    }

    protected boolean doesNotExposeShadowMungers() {
        return false;
    }

    public PerClause getPerClause() {
        return null;
    }

    public Collection<Declare> getDeclares() {
        return Collections.emptyList();
    }

    public Collection<ConcreteTypeMunger> getTypeMungers() {
        return Collections.emptyList();
    }

    public Collection<ResolvedMember> getPrivilegedAccesses() {
        return Collections.emptyList();
    }

    // ---- useful things

    public final boolean isInterface() {
        return Modifier.isInterface(getModifiers());
    }

    public final boolean isAbstract() {
        return Modifier.isAbstract(getModifiers());
    }

    public boolean isClass() {
        return false;
    }

    public boolean isAspect() {
        return false;
    }

    public boolean isAnnotationStyleAspect() {
        return false;
    }

    /**
     * Note: Only overridden by Name subtype.
     */
    public boolean isEnum() {
        return false;
    }

    /**
     * Note: Only overridden by Name subtype.
     */
    public boolean isAnnotation() {
        return false;
    }

    public boolean isAnonymous() {
        return false;
    }

    public boolean isNested() {
        return false;
    }

    public ResolvedType getOuterClass() {
        return null;
    }

    public void addAnnotation(AnnotationAJ annotationX) {
        throw new RuntimeException("ResolvedType.addAnnotation() should never be called");
    }

    public AnnotationAJ[] getAnnotations() {
        throw new RuntimeException("ResolvedType.getAnnotations() should never be called");
    }

    public boolean hasAnnotations() {
        throw new RuntimeException("ResolvedType.getAnnotations() should never be called");
    }

    /**
     * Note: Only overridden by ReferenceType subtype
     */
    public boolean canAnnotationTargetType() {
        return false;
    }

    /**
     * Note: Only overridden by ReferenceType subtype
     */
    public AnnotationTargetKind[] getAnnotationTargetKinds() {
        return null;
    }

    /**
     * Note: Only overridden by Name subtype.
     */
    public boolean isAnnotationWithRuntimeRetention() {
        return false;
    }

    public boolean isSynthetic() {
        return signature.indexOf("$ajc") != -1;
    }

    public final boolean isFinal() {
        return Modifier.isFinal(getModifiers());
    }

    protected Map<String, UnresolvedType> getMemberParameterizationMap() {
        if (!isParameterizedType()) {
            return Collections.emptyMap();
        }
        TypeVariable[] tvs = getGenericType().getTypeVariables();
        Map<String, UnresolvedType> parameterizationMap = new HashMap<String, UnresolvedType>();
        if (tvs.length != typeParameters.length) {
            world.getMessageHandler().handleMessage(new Message(
                    "Mismatch when building parameterization map. For type '" + this.signature + "' expecting "
                            + tvs.length + ":[" + toString(tvs) + "] type parameters but found "
                            + typeParameters.length + ":[" + toString(typeParameters) + "]",
                    "", IMessage.ERROR, getSourceLocation(), null, new ISourceLocation[] { getSourceLocation() }));
        } else {
            for (int i = 0; i < tvs.length; i++) {
                parameterizationMap.put(tvs[i].getName(), typeParameters[i]);
            }
        }
        return parameterizationMap;
    }

    private String toString(UnresolvedType[] typeParameters) {
        StringBuilder s = new StringBuilder();
        for (UnresolvedType tv : typeParameters) {
            s.append(tv.getSignature()).append(" ");
        }
        return s.toString().trim();
    }

    private String toString(TypeVariable[] tvs) {
        StringBuilder s = new StringBuilder();
        for (TypeVariable tv : tvs) {
            s.append(tv.getName()).append(" ");
        }
        return s.toString().trim();
    }

    public List<ShadowMunger> getDeclaredAdvice() {
        List<ShadowMunger> l = new ArrayList<ShadowMunger>();
        ResolvedMember[] methods = getDeclaredMethods();
        if (isParameterizedType()) {
            methods = getGenericType().getDeclaredMethods();
        }
        Map<String, UnresolvedType> typeVariableMap = getAjMemberParameterizationMap();
        for (int i = 0, len = methods.length; i < len; i++) {
            ShadowMunger munger = methods[i].getAssociatedShadowMunger();
            if (munger != null) {
                if (ajMembersNeedParameterization()) {
                    // munger.setPointcut(munger.getPointcut().parameterizeWith(
                    // typeVariableMap));
                    munger = munger.parameterizeWith(this, typeVariableMap);
                    if (munger instanceof Advice) {
                        Advice advice = (Advice) munger;
                        // update to use the parameterized signature...
                        UnresolvedType[] ptypes = methods[i].getGenericParameterTypes();
                        UnresolvedType[] newPTypes = new UnresolvedType[ptypes.length];
                        for (int j = 0; j < ptypes.length; j++) {
                            if (ptypes[j] instanceof TypeVariableReferenceType) {
                                TypeVariableReferenceType tvrt = (TypeVariableReferenceType) ptypes[j];
                                if (typeVariableMap.containsKey(tvrt.getTypeVariable().getName())) {
                                    newPTypes[j] = typeVariableMap.get(tvrt.getTypeVariable().getName());
                                } else {
                                    newPTypes[j] = ptypes[j];
                                }
                            } else {
                                newPTypes[j] = ptypes[j];
                            }
                        }
                        advice.setBindingParameterTypes(newPTypes);
                    }
                }
                munger.setDeclaringType(this);
                l.add(munger);
            }
        }
        return l;
    }

    public List<ShadowMunger> getDeclaredShadowMungers() {
        return getDeclaredAdvice();
    }

    // ---- only for testing!

    public ResolvedMember[] getDeclaredJavaFields() {
        return filterInJavaVisible(getDeclaredFields());
    }

    public ResolvedMember[] getDeclaredJavaMethods() {
        return filterInJavaVisible(getDeclaredMethods());
    }

    private ResolvedMember[] filterInJavaVisible(ResolvedMember[] ms) {
        List<ResolvedMember> l = new ArrayList<ResolvedMember>();
        for (int i = 0, len = ms.length; i < len; i++) {
            if (!ms[i].isAjSynthetic() && ms[i].getAssociatedShadowMunger() == null) {
                l.add(ms[i]);
            }
        }
        return l.toArray(new ResolvedMember[l.size()]);
    }

    public abstract ISourceContext getSourceContext();

    // ---- fields

    public static final ResolvedType[] NONE = new ResolvedType[0];
    public static final ResolvedType[] EMPTY_ARRAY = NONE;

    public static final Missing MISSING = new Missing();

    // ---- types
    public static ResolvedType makeArray(ResolvedType type, int dim) {
        if (dim == 0) {
            return type;
        }
        ResolvedType array = new ArrayReferenceType("[" + type.getSignature(), "[" + type.getErasureSignature(),
                type.getWorld(), type);
        return makeArray(array, dim - 1);
    }

    static class Primitive extends ResolvedType {
        private final int size;
        private final int index;

        Primitive(String signature, int size, int index) {
            super(signature, null);
            this.size = size;
            this.index = index;
            this.typeKind = TypeKind.PRIMITIVE;
        }

        @Override
        public final int getSize() {
            return size;
        }

        @Override
        public final int getModifiers() {
            return Modifier.PUBLIC | Modifier.FINAL;
        }

        @Override
        public final boolean isPrimitiveType() {
            return true;
        }

        @Override
        public boolean hasAnnotation(UnresolvedType ofType) {
            return false;
        }

        @Override
        public final boolean isAssignableFrom(ResolvedType other) {
            if (!other.isPrimitiveType()) {
                if (!world.isInJava5Mode()) {
                    return false;
                }
                return validBoxing.contains(this.getSignature() + other.getSignature());
            }
            return assignTable[((Primitive) other).index][index];
        }

        @Override
        public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
            return isAssignableFrom(other);
        }

        @Override
        public final boolean isCoerceableFrom(ResolvedType other) {
            if (this == other) {
                return true;
            }
            if (!other.isPrimitiveType()) {
                return false;
            }
            if (index > 6 || ((Primitive) other).index > 6) {
                return false;
            }
            return true;
        }

        @Override
        public ResolvedType resolve(World world) {
            if (this.world != world) {
                throw new IllegalStateException();
            }
            this.world = world;
            return super.resolve(world);
        }

        @Override
        public final boolean needsNoConversionFrom(ResolvedType other) {
            if (!other.isPrimitiveType()) {
                return false;
            }
            return noConvertTable[((Primitive) other).index][index];
        }

        private static final boolean[][] assignTable = { // to: B C D F I J S V Z
                // from
                { true, true, true, true, true, true, true, false, false }, // B
                { false, true, true, true, true, true, false, false, false }, // C
                { false, false, true, false, false, false, false, false, false }, // D
                { false, false, true, true, false, false, false, false, false }, // F
                { false, false, true, true, true, true, false, false, false }, // I
                { false, false, true, true, false, true, false, false, false }, // J
                { false, false, true, true, true, true, true, false, false }, // S
                { false, false, false, false, false, false, false, true, false }, // V
                { false, false, false, false, false, false, false, false, true }, // Z
        };
        private static final boolean[][] noConvertTable = { // to: B C D F I J S
                // V Z from
                { true, true, false, false, true, false, true, false, false }, // B
                { false, true, false, false, true, false, false, false, false }, // C
                { false, false, true, false, false, false, false, false, false }, // D
                { false, false, false, true, false, false, false, false, false }, // F
                { false, false, false, false, true, false, false, false, false }, // I
                { false, false, false, false, false, true, false, false, false }, // J
                { false, false, false, false, true, false, true, false, false }, // S
                { false, false, false, false, false, false, false, true, false }, // V
                { false, false, false, false, false, false, false, false, true }, // Z
        };

        // ----

        @Override
        public final ResolvedMember[] getDeclaredFields() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedMember[] getDeclaredMethods() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedType[] getDeclaredInterfaces() {
            return ResolvedType.NONE;
        }

        @Override
        public final ResolvedMember[] getDeclaredPointcuts() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedType getSuperclass() {
            return null;
        }

        @Override
        public ISourceContext getSourceContext() {
            return null;
        }

    }

    static class Missing extends ResolvedType {
        Missing() {
            super(MISSING_NAME, null);
        }

        // public final String toString() {
        // return "<missing>";
        // }
        @Override
        public final String getName() {
            return MISSING_NAME;
        }

        @Override
        public final boolean isMissing() {
            return true;
        }

        @Override
        public boolean hasAnnotation(UnresolvedType ofType) {
            return false;
        }

        @Override
        public final ResolvedMember[] getDeclaredFields() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedMember[] getDeclaredMethods() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedType[] getDeclaredInterfaces() {
            return ResolvedType.NONE;
        }

        @Override
        public final ResolvedMember[] getDeclaredPointcuts() {
            return ResolvedMember.NONE;
        }

        @Override
        public final ResolvedType getSuperclass() {
            return null;
        }

        @Override
        public final int getModifiers() {
            return 0;
        }

        @Override
        public final boolean isAssignableFrom(ResolvedType other) {
            return false;
        }

        @Override
        public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
            return false;
        }

        @Override
        public final boolean isCoerceableFrom(ResolvedType other) {
            return false;
        }

        @Override
        public boolean needsNoConversionFrom(ResolvedType other) {
            return false;
        }

        @Override
        public ISourceContext getSourceContext() {
            return null;
        }

    }

    /**
     * Look up a member, takes into account any ITDs on this type. return null if not found
     */
    public ResolvedMember lookupMemberNoSupers(Member member) {
        ResolvedMember ret = lookupDirectlyDeclaredMemberNoSupers(member);
        if (ret == null && interTypeMungers != null) {
            for (ConcreteTypeMunger tm : interTypeMungers) {
                if (matches(tm.getSignature(), member)) {
                    return tm.getSignature();
                }
            }
        }
        return ret;
    }

    public ResolvedMember lookupMemberWithSupersAndITDs(Member member) {
        ResolvedMember ret = lookupMemberNoSupers(member);
        if (ret != null) {
            return ret;
        }

        ResolvedType supert = getSuperclass();
        while (ret == null && supert != null) {
            ret = supert.lookupMemberNoSupers(member);
            if (ret == null) {
                supert = supert.getSuperclass();
            }
        }

        return ret;
    }

    /**
     * as lookupMemberNoSupers, but does not include ITDs
     * 
     * @param member
     * @return
     */
    public ResolvedMember lookupDirectlyDeclaredMemberNoSupers(Member member) {
        ResolvedMember ret;
        if (member.getKind() == Member.FIELD) {
            ret = lookupMember(member, getDeclaredFields());
        } else {
            // assert member.getKind() == Member.METHOD || member.getKind() ==
            // Member.CONSTRUCTOR
            ret = lookupMember(member, getDeclaredMethods());
        }
        return ret;
    }

    /**
     * This lookup has specialized behaviour - a null result tells the EclipseTypeMunger that it should make a default
     * implementation of a method on this type.
     * 
     * @param member
     * @return
     */
    public ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member) {
        return lookupMemberIncludingITDsOnInterfaces(member, this);
    }

    private ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member, ResolvedType onType) {
        ResolvedMember ret = onType.lookupMemberNoSupers(member);
        if (ret != null) {
            return ret;
        } else {
            ResolvedType superType = onType.getSuperclass();
            if (superType != null) {
                ret = lookupMemberIncludingITDsOnInterfaces(member, superType);
            }
            if (ret == null) {
                // try interfaces then, but only ITDs now...
                ResolvedType[] superInterfaces = onType.getDeclaredInterfaces();
                for (int i = 0; i < superInterfaces.length; i++) {
                    ret = superInterfaces[i].lookupMethodInITDs(member);
                    if (ret != null) {
                        return ret;
                    }
                }
            }
        }
        return ret;
    }

    protected List<ConcreteTypeMunger> interTypeMungers = new ArrayList<ConcreteTypeMunger>();

    public List<ConcreteTypeMunger> getInterTypeMungers() {
        return interTypeMungers;
    }

    public List<ConcreteTypeMunger> getInterTypeParentMungers() {
        List<ConcreteTypeMunger> l = new ArrayList<ConcreteTypeMunger>();
        for (ConcreteTypeMunger element : interTypeMungers) {
            if (element.getMunger() instanceof NewParentTypeMunger) {
                l.add(element);
            }
        }
        return l;
    }

    /**
     * ??? This method is O(N*M) where N = number of methods and M is number of inter-type declarations in my super
     */
    public List<ConcreteTypeMunger> getInterTypeMungersIncludingSupers() {
        ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
        collectInterTypeMungers(ret);
        return ret;
    }

    public List<ConcreteTypeMunger> getInterTypeParentMungersIncludingSupers() {
        ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
        collectInterTypeParentMungers(ret);
        return ret;
    }

    private void collectInterTypeParentMungers(List<ConcreteTypeMunger> collector) {
        for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
            ResolvedType superType = iter.next();
            superType.collectInterTypeParentMungers(collector);
        }
        collector.addAll(getInterTypeParentMungers());
    }

    protected void collectInterTypeMungers(List<ConcreteTypeMunger> collector) {
        for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
            ResolvedType superType = iter.next();
            if (superType == null) {
                throw new BCException(
                        "UnexpectedProblem: a supertype in the hierarchy for " + this.getName() + " is null");
            }
            superType.collectInterTypeMungers(collector);
        }

        outer: for (Iterator<ConcreteTypeMunger> iter1 = collector.iterator(); iter1.hasNext();) {
            ConcreteTypeMunger superMunger = iter1.next();
            if (superMunger.getSignature() == null) {
                continue;
            }

            if (!superMunger.getSignature().isAbstract()) {
                continue;
            }

            for (ConcreteTypeMunger myMunger : getInterTypeMungers()) {
                if (conflictingSignature(myMunger.getSignature(), superMunger.getSignature())) {
                    iter1.remove();
                    continue outer;
                }
            }

            if (!superMunger.getSignature().isPublic()) {
                continue;
            }

            for (Iterator<ResolvedMember> iter = getMethods(true, true); iter.hasNext();) {
                ResolvedMember method = iter.next();
                if (conflictingSignature(method, superMunger.getSignature())) {
                    iter1.remove();
                    continue outer;
                }
            }
        }

        collector.addAll(getInterTypeMungers());
    }

    /**
     * Check: 1) That we don't have any abstract type mungers unless this type is abstract. 2) That an abstract ITDM on an interface
     * is declared public. (Compiler limitation) (PR70794)
     */
    public void checkInterTypeMungers() {
        if (isAbstract()) {
            return;
        }

        boolean itdProblem = false;

        for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
            itdProblem = checkAbstractDeclaration(munger) || itdProblem; // Rule 2
        }

        if (itdProblem) {
            return; // If the rules above are broken, return right now
        }

        for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
            if (munger.getSignature() != null && munger.getSignature().isAbstract()
                    && munger.getMunger().getKind() != ResolvedTypeMunger.PrivilegedAccess) { // Rule 1
                if (munger.getMunger().getKind() == ResolvedTypeMunger.MethodDelegate2) {
                    // ignore for @AJ ITD as munger.getSignature() is the
                    // interface method hence abstract
                } else {
                    world.getMessageHandler()
                            .handleMessage(new Message(
                                    "must implement abstract inter-type declaration: " + munger.getSignature(), "",
                                    IMessage.ERROR, getSourceLocation(), null,
                                    new ISourceLocation[] { getMungerLocation(munger) }));
                }
            }
        }
    }

    /**
     * See PR70794. This method checks that if an abstract inter-type method declaration is made on an interface then it must also
     * be public. This is a compiler limitation that could be made to work in the future (if someone provides a worthwhile usecase)
     * 
     * @return indicates if the munger failed the check
     */
    private boolean checkAbstractDeclaration(ConcreteTypeMunger munger) {
        if (munger.getMunger() != null && (munger.getMunger() instanceof NewMethodTypeMunger)) {
            ResolvedMember itdMember = munger.getSignature();
            ResolvedType onType = itdMember.getDeclaringType().resolve(world);
            if (onType.isInterface() && itdMember.isAbstract() && !itdMember.isPublic()) {
                world.getMessageHandler()
                        .handleMessage(new Message(
                                WeaverMessages.format(WeaverMessages.ITD_ABSTRACT_MUST_BE_PUBLIC_ON_INTERFACE,
                                        munger.getSignature(), onType),
                                "", Message.ERROR, getSourceLocation(), null,
                                new ISourceLocation[] { getMungerLocation(munger) }));
                return true;
            }
        }
        return false;
    }

    /**
     * Get a source location for the munger. Until intertype mungers remember where they came from, the source location for the
     * munger itself is null. In these cases use the source location for the aspect containing the ITD.
     */
    private ISourceLocation getMungerLocation(ConcreteTypeMunger munger) {
        ISourceLocation sloc = munger.getSourceLocation();
        if (sloc == null) {
            sloc = munger.getAspectType().getSourceLocation();
        }
        return sloc;
    }

    /**
     * Returns a ResolvedType object representing the declaring type of this type, or null if this type does not represent a
     * non-package-level-type.
     * <p/>
     * <strong>Warning</strong>: This is guaranteed to work for all member types. For anonymous/local types, the only guarantee is
     * given in JLS 13.1, where it guarantees that if you call getDeclaringType() repeatedly, you will eventually get the top-level
     * class, but it does not say anything about classes in between.
     * 
     * @return the declaring type, or null if it is not an nested type.
     */
    public ResolvedType getDeclaringType() {
        if (isArray()) {
            return null;
        }
        if (isNested() || isAnonymous()) {
            return getOuterClass();
        }
        return null;
    }

    public static boolean isVisible(int modifiers, ResolvedType targetType, ResolvedType fromType) {
        // System.err.println("mod: " + modifiers + ", " + targetType + " and "
        // + fromType);

        if (Modifier.isPublic(modifiers)) {
            return true;
        } else if (Modifier.isPrivate(modifiers)) {
            return targetType.getOutermostType().equals(fromType.getOutermostType());
        } else if (Modifier.isProtected(modifiers)) {
            return samePackage(targetType, fromType) || targetType.isAssignableFrom(fromType);
        } else { // package-visible
            return samePackage(targetType, fromType);
        }
    }

    private static boolean samePackage(ResolvedType targetType, ResolvedType fromType) {
        String p1 = targetType.getPackageName();
        String p2 = fromType.getPackageName();
        if (p1 == null) {
            return p2 == null;
        }
        if (p2 == null) {
            return false;
        }
        return p1.equals(p2);
    }

    /**
     * Checks if the generic type for 'this' and the generic type for 'other' are the same - it can be passed raw or parameterized
     * versions and will just compare the underlying generic type.
     */
    private boolean genericTypeEquals(ResolvedType other) {
        ResolvedType rt = other;
        if (rt.isParameterizedType() || rt.isRawType()) {
            rt.getGenericType();
        }
        if (((isParameterizedType() || isRawType()) && getGenericType().equals(rt)) || (this.equals(other))) {
            return true;
        }
        return false;
    }

    /**
     * Look up the actual occurence of a particular type in the hierarchy for 'this' type. The input is going to be a generic type,
     * and the caller wants to know if it was used in its RAW or a PARAMETERIZED form in this hierarchy.
     * 
     * returns null if it can't be found.
     */
    public ResolvedType discoverActualOccurrenceOfTypeInHierarchy(ResolvedType lookingFor) {
        if (!lookingFor.isGenericType()) {
            throw new BCException("assertion failed: method should only be called with generic type, but "
                    + lookingFor + " is " + lookingFor.typeKind);
        }

        if (this.equals(ResolvedType.OBJECT)) {
            return null;
        }

        if (genericTypeEquals(lookingFor)) {
            return this;
        }

        ResolvedType superT = getSuperclass();
        if (superT.genericTypeEquals(lookingFor)) {
            return superT;
        }

        ResolvedType[] superIs = getDeclaredInterfaces();
        for (int i = 0; i < superIs.length; i++) {
            ResolvedType superI = superIs[i];
            if (superI.genericTypeEquals(lookingFor)) {
                return superI;
            }
            ResolvedType checkTheSuperI = superI.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
            if (checkTheSuperI != null) {
                return checkTheSuperI;
            }
        }
        return superT.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
    }

    /**
     * Called for all type mungers but only does something if they share type variables with a generic type which they target. When
     * this happens this routine will check for the target type in the target hierarchy and 'bind' any type parameters as
     * appropriate. For example, for the ITD "List<T> I<T>.x" against a type like this: "class A implements I<String>" this routine
     * will return a parameterized form of the ITD "List<String> I.x"
     */
    public ConcreteTypeMunger fillInAnyTypeParameters(ConcreteTypeMunger munger) {
        boolean debug = false;
        ResolvedMember member = munger.getSignature();
        if (munger.isTargetTypeParameterized()) {
            if (debug) {
                System.err
                        .println("Processing attempted parameterization of " + munger + " targetting type " + this);
            }
            if (debug) {
                System.err.println("  This type is " + this + "  (" + typeKind + ")");
            }
            // need to tailor this munger instance for the particular target...
            if (debug) {
                System.err.println("  Signature that needs parameterizing: " + member);
            }
            // Retrieve the generic type
            ResolvedType onTypeResolved = world.resolve(member.getDeclaringType());
            ResolvedType onType = onTypeResolved.getGenericType();
            if (onType == null) {
                // The target is not generic
                getWorld().getMessageHandler().handleMessage(
                        MessageUtil.error("The target type for the intertype declaration is not generic",
                                munger.getSourceLocation()));
                return munger;
            }
            member.resolve(world); // Ensure all parts of the member are resolved
            if (debug) {
                System.err.println("  Actual target ontype: " + onType + "  (" + onType.typeKind + ")");
            }
            // quickly find the targettype in the type hierarchy for this type
            // (it will be either RAW or PARAMETERIZED)
            ResolvedType actualTarget = discoverActualOccurrenceOfTypeInHierarchy(onType);
            if (actualTarget == null) {
                throw new BCException(
                        "assertion failed: asked " + this + " for occurrence of " + onType + " in its hierarchy??");
            }

            // only bind the tvars if its a parameterized type or the raw type
            // (in which case they collapse to bounds) - don't do it
            // for generic types ;)
            if (!actualTarget.isGenericType()) {
                if (debug) {
                    System.err.println("Occurrence in " + this + " is actually " + actualTarget + "  ("
                            + actualTarget.typeKind + ")");
                    // parameterize the signature
                    // ResolvedMember newOne =
                    // member.parameterizedWith(actualTarget.getTypeParameters(),
                    // onType,actualTarget.isParameterizedType());
                }
            }
            // if (!actualTarget.isRawType())
            munger = munger.parameterizedFor(actualTarget);
            if (debug) {
                System.err.println("New sig: " + munger.getSignature());
            }

            if (debug) {
                System.err.println("=====================================");
            }
        }
        return munger;
    }

    /**
     * Add an intertype munger to this type. isDuringCompilation tells us if we should be checking for an error scenario where two
     * ITD fields are trying to use the same name. When this happens during compilation one of them is altered to get mangled name
     * but when it happens during weaving it is too late and we need to put out an error asking them to recompile.
     */
    public void addInterTypeMunger(ConcreteTypeMunger munger, boolean isDuringCompilation) {
        ResolvedMember sig = munger.getSignature();
        bits = (bits & ~MungersAnalyzed); // clear the bit - as the mungers have changed
        if (sig == null || munger.getMunger() == null
                || munger.getMunger().getKind() == ResolvedTypeMunger.PrivilegedAccess) {
            interTypeMungers.add(munger);
            return;
        }

        // ConcreteTypeMunger originalMunger = munger;
        // we will use the 'parameterized' ITD for all the comparisons but we
        // say the original
        // one passed in actually matched as it will be added to the intertype
        // member finder
        // for the target type. It is possible we only want to do this if a
        // generic type
        // is discovered and the tvar is collapsed to a bound?
        munger = fillInAnyTypeParameters(munger);
        sig = munger.getSignature(); // possibly changed when type parms filled in

        if (sig.getKind() == Member.METHOD) {
            // OPTIMIZE can this be sped up?
            if (clashesWithExistingMember(munger, getMethods(true, false))) { // ITDs checked below
                return;
            }
            if (this.isInterface()) {
                // OPTIMIZE this set of methods are always the same - must we keep creating them as a list?
                if (clashesWithExistingMember(munger,
                        Arrays.asList(world.getCoreType(OBJECT).getDeclaredMethods()).iterator())) {
                    return;
                }
            }
        } else if (sig.getKind() == Member.FIELD) {
            if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredFields()).iterator())) {
                return;
            }
            // Cannot cope with two version '2' style mungers for the same field on the same type
            // Must error and request the user recompile at least one aspect with the
            // -Xset:itdStyle=1 option
            if (!isDuringCompilation) {
                ResolvedTypeMunger thisRealMunger = munger.getMunger();
                if (thisRealMunger instanceof NewFieldTypeMunger) {
                    NewFieldTypeMunger newFieldTypeMunger = (NewFieldTypeMunger) thisRealMunger;
                    if (newFieldTypeMunger.version == NewFieldTypeMunger.VersionTwo) {
                        String thisRealMungerSignatureName = newFieldTypeMunger.getSignature().getName();
                        for (ConcreteTypeMunger typeMunger : interTypeMungers) {
                            if (typeMunger.getMunger() instanceof NewFieldTypeMunger) {
                                if (typeMunger.getSignature().getKind() == Member.FIELD) {
                                    NewFieldTypeMunger existing = (NewFieldTypeMunger) typeMunger.getMunger();
                                    if (existing.getSignature().getName().equals(thisRealMungerSignatureName)
                                            && existing.version == NewFieldTypeMunger.VersionTwo
                                            // this check ensures no problem for a clash with an ITD on an interface
                                            && existing.getSignature().getDeclaringType()
                                                    .equals(newFieldTypeMunger.getSignature().getDeclaringType())) {

                                        // report error on the aspect
                                        StringBuffer sb = new StringBuffer();
                                        sb.append(
                                                "Cannot handle two aspects both attempting to use new style ITDs for the same named field ");
                                        sb.append(
                                                "on the same target type.  Please recompile at least one aspect with '-Xset:itdVersion=1'.");
                                        sb.append(" Aspects involved: " + munger.getAspectType().getName() + " and "
                                                + typeMunger.getAspectType().getName() + ".");
                                        sb.append(" Field is named '" + existing.getSignature().getName() + "'");
                                        getWorld().getMessageHandler().handleMessage(
                                                new Message(sb.toString(), getSourceLocation(), true));
                                        return;
                                    }
                                }
                            }
                        }
                    }
                }
            }
        } else {
            if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredMethods()).iterator())) {
                return;
            }
        }

        boolean needsAdding = true;
        boolean needsToBeAddedEarlier = false;
        // now compare to existingMungers
        for (Iterator<ConcreteTypeMunger> i = interTypeMungers.iterator(); i.hasNext();) {
            ConcreteTypeMunger existingMunger = i.next();
            boolean v2itds = munger.getSignature().getKind() == Member.FIELD
                    && (munger.getMunger() instanceof NewFieldTypeMunger)
                    && ((NewFieldTypeMunger) munger.getMunger()).version == NewFieldTypeMunger.VersionTwo;

            if (conflictingSignature(existingMunger.getSignature(), munger.getSignature(), v2itds)) {
                // System.err.println("match " + munger + " with " + existingMunger);
                if (isVisible(munger.getSignature().getModifiers(), munger.getAspectType(),
                        existingMunger.getAspectType())) {
                    // System.err.println("    is visible");
                    int c = compareMemberPrecedence(sig, existingMunger.getSignature());
                    if (c == 0) {
                        c = getWorld().compareByPrecedenceAndHierarchy(munger.getAspectType(),
                                existingMunger.getAspectType());
                    }
                    // System.err.println("       compare: " + c);
                    if (c < 0) {
                        // the existing munger dominates the new munger
                        checkLegalOverride(munger.getSignature(), existingMunger.getSignature(), 0x11, null);
                        needsAdding = false;
                        if (munger.getSignature().getKind() == Member.FIELD
                                && munger.getSignature().getDeclaringType().resolve(world).isInterface()
                                && ((NewFieldTypeMunger) munger
                                        .getMunger()).version == NewFieldTypeMunger.VersionTwo) {
                            // still need to add it
                            needsAdding = true;
                        }
                        break;
                    } else if (c > 0) {
                        // the new munger dominates the existing one
                        checkLegalOverride(existingMunger.getSignature(), munger.getSignature(), 0x11, null);
                        //                  i.remove();
                        if (existingMunger.getSignature().getKind() == Member.FIELD
                                && existingMunger.getSignature().getDeclaringType().resolve(world).isInterface()
                                && ((NewFieldTypeMunger) existingMunger
                                        .getMunger()).version == NewFieldTypeMunger.VersionTwo) {
                            needsToBeAddedEarlier = true;
                        } else {
                            i.remove();
                        }
                        break;
                    } else {
                        interTypeConflictError(munger, existingMunger);
                        interTypeConflictError(existingMunger, munger);
                        return;
                    }
                }
            }
        }
        // System.err.println("adding: " + munger + " to " + this);
        // we are adding the parameterized form of the ITD to the list of
        // mungers. Within it, the munger knows the original declared
        // signature for the ITD so it can be retrieved.
        if (needsAdding) {
            if (!needsToBeAddedEarlier) {
                interTypeMungers.add(munger);
            } else {
                interTypeMungers.add(0, munger);
            }
        }
    }

    /**
     * Compare the type transformer with the existing members. A clash may not be an error (the ITD may be the 'default
     * implementation') so returning false is not always a sign of an error.
     * 
     * @return true if there is a clash
     */
    private boolean clashesWithExistingMember(ConcreteTypeMunger typeTransformer,
            Iterator<ResolvedMember> existingMembers) {
        ResolvedMember typeTransformerSignature = typeTransformer.getSignature();

        // ResolvedType declaringAspectType = munger.getAspectType();
        // if (declaringAspectType.isRawType()) declaringAspectType =
        // declaringAspectType.getGenericType();
        // if (declaringAspectType.isGenericType()) {
        //
        // ResolvedType genericOnType =
        // getWorld().resolve(sig.getDeclaringType()).getGenericType();
        // ConcreteTypeMunger ctm =
        // munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy
        // (genericOnType));
        // sig = ctm.getSignature(); // possible sig change when type
        // }
        // if (munger.getMunger().hasTypeVariableAliases()) {
        // ResolvedType genericOnType =
        // getWorld().resolve(sig.getDeclaringType()).getGenericType();
        // ConcreteTypeMunger ctm =
        // munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy(
        // genericOnType));
        // sig = ctm.getSignature(); // possible sig change when type parameters
        // filled in
        // }
        ResolvedTypeMunger rtm = typeTransformer.getMunger();
        boolean v2itds = true;
        if (rtm instanceof NewFieldTypeMunger
                && ((NewFieldTypeMunger) rtm).version == NewFieldTypeMunger.VersionOne) {
            v2itds = false;
        }
        while (existingMembers.hasNext()) {
            ResolvedMember existingMember = existingMembers.next();
            // don't worry about clashing with bridge methods
            if (existingMember.isBridgeMethod()) {
                continue;
            }
            if (conflictingSignature(existingMember, typeTransformerSignature, v2itds)) {
                // System.err.println("conflict: existingMember=" +
                // existingMember + "   typeMunger=" + munger);
                // System.err.println(munger.getSourceLocation() + ", " +
                // munger.getSignature() + ", " +
                // munger.getSignature().getSourceLocation());

                if (isVisible(existingMember.getModifiers(), this, typeTransformer.getAspectType())) {
                    int c = compareMemberPrecedence(typeTransformerSignature, existingMember);
                    // System.err.println("   c: " + c);
                    if (c < 0) {
                        ResolvedType typeTransformerTargetType = typeTransformerSignature.getDeclaringType()
                                .resolve(world);
                        if (typeTransformerTargetType.isInterface()) {
                            ResolvedType existingMemberType = existingMember.getDeclaringType().resolve(world);
                            if ((rtm instanceof NewMethodTypeMunger)
                                    && !typeTransformerTargetType.equals(existingMemberType)) {
                                // Might be pr404601. ITD is on an interface with a different visibility to the real member
                                if (Modifier.isPrivate(typeTransformerSignature.getModifiers())
                                        && Modifier.isPublic(existingMember.getModifiers())) {
                                    world.getMessageHandler().handleMessage(new Message(
                                            "private intertype declaration '" + typeTransformerSignature.toString()
                                                    + "' clashes with public member '" + existingMember.toString()
                                                    + "'",
                                            existingMember.getSourceLocation(), true));
                                }
                            }
                        }
                        // existingMember dominates munger
                        checkLegalOverride(typeTransformerSignature, existingMember, 0x10,
                                typeTransformer.getAspectType());
                        return true;
                    } else if (c > 0) {
                        // munger dominates existingMember
                        checkLegalOverride(existingMember, typeTransformerSignature, 0x01,
                                typeTransformer.getAspectType());
                        // interTypeMungers.add(munger);
                        // ??? might need list of these overridden abstracts
                        continue;
                    } else {
                        // bridge methods can differ solely in return type.
                        // FIXME this whole method seems very hokey - unaware of covariance/varargs/bridging - it
                        // could do with a rewrite !
                        boolean sameReturnTypes = (existingMember.getReturnType()
                                .equals(typeTransformerSignature.getReturnType()));
                        if (sameReturnTypes) {
                            // pr206732 - if the existingMember is due to a
                            // previous application of this same ITD (which can
                            // happen if this is a binary type being brought in
                            // from the aspectpath). The 'better' fix is
                            // to recognize it is from the aspectpath at a
                            // higher level and dont do this, but that is rather
                            // more work.
                            boolean isDuplicateOfPreviousITD = false;
                            ResolvedType declaringRt = existingMember.getDeclaringType().resolve(world);
                            WeaverStateInfo wsi = declaringRt.getWeaverState();
                            if (wsi != null) {
                                List<ConcreteTypeMunger> mungersAffectingThisType = wsi.getTypeMungers(declaringRt);
                                if (mungersAffectingThisType != null) {
                                    for (Iterator<ConcreteTypeMunger> iterator = mungersAffectingThisType
                                            .iterator(); iterator.hasNext() && !isDuplicateOfPreviousITD;) {
                                        ConcreteTypeMunger ctMunger = iterator.next();
                                        // relatively crude check - is the ITD
                                        // for the same as the existingmember
                                        // and does it come
                                        // from the same aspect
                                        if (ctMunger.getSignature().equals(existingMember)
                                                && ctMunger.aspectType.equals(typeTransformer.getAspectType())) {
                                            isDuplicateOfPreviousITD = true;
                                        }
                                    }
                                }
                            }
                            if (!isDuplicateOfPreviousITD) {
                                // b275032 - this is OK if it is the default ctor and that default ctor was generated
                                // at compile time, otherwise we cannot overwrite it
                                if (!(typeTransformerSignature.getName().equals("<init>")
                                        && existingMember.isDefaultConstructor())) {
                                    String aspectName = typeTransformer.getAspectType().getName();
                                    ISourceLocation typeTransformerLocation = typeTransformer.getSourceLocation();
                                    ISourceLocation existingMemberLocation = existingMember.getSourceLocation();
                                    String msg = WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT,
                                            aspectName, existingMember);

                                    // this isn't quite right really... as I think the errors should only be recorded against
                                    // what is currently being processed or they may get lost or reported twice

                                    // report error on the aspect
                                    getWorld().getMessageHandler()
                                            .handleMessage(new Message(msg, typeTransformerLocation, true));

                                    // report error on the affected type, if we can
                                    if (existingMemberLocation != null) {
                                        getWorld().getMessageHandler()
                                                .handleMessage(new Message(msg, existingMemberLocation, true));
                                    }
                                    return true; // clash - so ignore this itd
                                }
                            }
                        }
                    }
                } else if (isDuplicateMemberWithinTargetType(existingMember, this, typeTransformerSignature)) {
                    getWorld().getMessageHandler()
                            .handleMessage(MessageUtil.error(
                                    WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT,
                                            typeTransformer.getAspectType().getName(), existingMember),
                                    typeTransformer.getSourceLocation()));
                    return true;
                }
            }
        }
        return false;
    }

    // we know that the member signature matches, but that the member in the
    // target type is not visible to the aspect.
    // this may still be disallowed if it would result in two members within the
    // same declaring type with the same
    // signature AND more than one of them is concrete AND they are both visible
    // within the target type.
    private boolean isDuplicateMemberWithinTargetType(ResolvedMember existingMember, ResolvedType targetType,
            ResolvedMember itdMember) {
        if ((existingMember.isAbstract() || itdMember.isAbstract())) {
            return false;
        }
        UnresolvedType declaringType = existingMember.getDeclaringType();
        if (!targetType.equals(declaringType)) {
            return false;
        }
        // now have to test that itdMember is visible from targetType
        if (Modifier.isPrivate(itdMember.getModifiers())) {
            return false;
        }
        if (itdMember.isPublic()) {
            return true;
        }
        // must be in same package to be visible then...
        if (!targetType.getPackageName().equals(itdMember.getDeclaringType().getPackageName())) {
            return false;
        }

        // trying to put two members with the same signature into the exact same
        // type..., and both visible in that type.
        return true;
    }

    /**
     * @param transformerPosition which parameter is the type transformer (0x10 for first, 0x01 for second, 0x11 for both, 0x00 for
     *        neither)
     * @param aspectType the declaring type of aspect defining the *first* type transformer
     * @return true if the override is legal note: calling showMessage with two locations issues TWO messages, not ONE message with
     *         an additional source location.
     */
    public boolean checkLegalOverride(ResolvedMember parent, ResolvedMember child, int transformerPosition,
            ResolvedType aspectType) {
        // System.err.println("check: " + child.getDeclaringType() + " overrides " + parent.getDeclaringType());
        if (Modifier.isFinal(parent.getModifiers())) {
            // If the ITD matching is occurring due to pulling in a BinaryTypeBinding then this check can incorrectly
            // signal an error because the ITD transformer being examined here will exactly match the member it added
            // during the first round of compilation. This situation can only occur if the ITD is on an interface whilst
            // the class is the top most implementor. If the ITD is on the same type that received it during compilation,
            // this method won't be called as the previous check for precedence level will return 0.

            if (transformerPosition == 0x10 && aspectType != null) {
                ResolvedType nonItdDeclaringType = child.getDeclaringType().resolve(world);
                WeaverStateInfo wsi = nonItdDeclaringType.getWeaverState();
                if (wsi != null) {
                    List<ConcreteTypeMunger> transformersOnThisType = wsi.getTypeMungers(nonItdDeclaringType);
                    if (transformersOnThisType != null) {
                        for (ConcreteTypeMunger transformer : transformersOnThisType) {
                            // relatively crude check - is the ITD for the same as the existingmember
                            // and does it come from the same aspect
                            if (transformer.aspectType.equals(aspectType)) {
                                if (parent.equalsApartFromDeclaringType(transformer.getSignature())) {
                                    return true;
                                }
                            }
                        }
                    }
                }
            }

            world.showMessage(Message.ERROR,
                    WeaverMessages.format(WeaverMessages.CANT_OVERRIDE_FINAL_MEMBER, parent),
                    child.getSourceLocation(), null);
            return false;
        }

        boolean incompatibleReturnTypes = false;
        // In 1.5 mode, allow for covariance on return type
        if (world.isInJava5Mode() && parent.getKind() == Member.METHOD) {

            // Look at the generic types when doing this comparison
            ResolvedType rtParentReturnType = parent.resolve(world).getGenericReturnType().resolve(world);
            ResolvedType rtChildReturnType = child.resolve(world).getGenericReturnType().resolve(world);
            incompatibleReturnTypes = !rtParentReturnType.isAssignableFrom(rtChildReturnType);
            // For debug, uncomment this bit and we'll repeat the check - stick
            // a breakpoint on the call
            // if (incompatibleReturnTypes) {
            // incompatibleReturnTypes =
            // !rtParentReturnType.isAssignableFrom(rtChildReturnType);
            // }
        } else {
            ResolvedType rtParentReturnType = parent.resolve(world).getGenericReturnType().resolve(world);
            ResolvedType rtChildReturnType = child.resolve(world).getGenericReturnType().resolve(world);

            incompatibleReturnTypes = !rtParentReturnType.equals(rtChildReturnType);
        }

        if (incompatibleReturnTypes) {
            world.showMessage(IMessage.ERROR,
                    WeaverMessages.format(WeaverMessages.ITD_RETURN_TYPE_MISMATCH, parent, child),
                    child.getSourceLocation(), parent.getSourceLocation());
            return false;
        }
        if (parent.getKind() == Member.POINTCUT) {
            UnresolvedType[] pTypes = parent.getParameterTypes();
            UnresolvedType[] cTypes = child.getParameterTypes();
            if (!Arrays.equals(pTypes, cTypes)) {
                world.showMessage(IMessage.ERROR,
                        WeaverMessages.format(WeaverMessages.ITD_PARAM_TYPE_MISMATCH, parent, child),
                        child.getSourceLocation(), parent.getSourceLocation());
                return false;
            }
        }
        // System.err.println("check: " + child.getModifiers() +
        // " more visible " + parent.getModifiers());
        if (isMoreVisible(parent.getModifiers(), child.getModifiers())) {
            world.showMessage(IMessage.ERROR,
                    WeaverMessages.format(WeaverMessages.ITD_VISIBILITY_REDUCTION, parent, child),
                    child.getSourceLocation(), parent.getSourceLocation());
            return false;
        }

        // check declared exceptions
        ResolvedType[] childExceptions = world.resolve(child.getExceptions());
        ResolvedType[] parentExceptions = world.resolve(parent.getExceptions());
        ResolvedType runtimeException = world.resolve("java.lang.RuntimeException");
        ResolvedType error = world.resolve("java.lang.Error");

        outer: for (int i = 0, leni = childExceptions.length; i < leni; i++) {
            // System.err.println("checking: " + childExceptions[i]);
            if (runtimeException.isAssignableFrom(childExceptions[i])) {
                continue;
            }
            if (error.isAssignableFrom(childExceptions[i])) {
                continue;
            }

            for (int j = 0, lenj = parentExceptions.length; j < lenj; j++) {
                if (parentExceptions[j].isAssignableFrom(childExceptions[i])) {
                    continue outer;
                }
            }

            // this message is now better handled my MethodVerifier in JDT core.
            // world.showMessage(IMessage.ERROR,
            // WeaverMessages.format(WeaverMessages.ITD_DOESNT_THROW,
            // childExceptions[i].getName()),
            // child.getSourceLocation(), null);

            return false;
        }
        boolean parentStatic = Modifier.isStatic(parent.getModifiers());
        boolean childStatic = Modifier.isStatic(child.getModifiers());
        if (parentStatic && !childStatic) {
            world.showMessage(IMessage.ERROR,
                    WeaverMessages.format(WeaverMessages.ITD_OVERRIDDEN_STATIC, child, parent),
                    child.getSourceLocation(), null);
            return false;
        } else if (childStatic && !parentStatic) {
            world.showMessage(IMessage.ERROR,
                    WeaverMessages.format(WeaverMessages.ITD_OVERIDDING_STATIC, child, parent),
                    child.getSourceLocation(), null);
            return false;
        }
        return true;

    }

    private int compareMemberPrecedence(ResolvedMember m1, ResolvedMember m2) {
        // if (!m1.getReturnType().equals(m2.getReturnType())) return 0;

        // need to allow for the special case of 'clone' - which is like
        // abstract but is
        // not marked abstract. The code below this next line seems to make
        // assumptions
        // about what will have gotten through the compiler based on the normal
        // java rules. clone goes against these...
        if (Modifier.isProtected(m2.getModifiers()) && m2.getName().charAt(0) == 'c') {
            UnresolvedType declaring = m2.getDeclaringType();
            if (declaring != null) {
                if (declaring.getName().equals("java.lang.Object") && m2.getName().equals("clone")) {
                    return +1;
                }
            }
        }

        if (Modifier.isAbstract(m1.getModifiers())) {
            return -1;
        }
        if (Modifier.isAbstract(m2.getModifiers())) {
            return +1;
        }

        if (m1.getDeclaringType().equals(m2.getDeclaringType())) {
            return 0;
        }

        ResolvedType t1 = m1.getDeclaringType().resolve(world);
        ResolvedType t2 = m2.getDeclaringType().resolve(world);
        if (t1.isAssignableFrom(t2)) {
            return -1;
        }
        if (t2.isAssignableFrom(t1)) {
            return +1;
        }
        return 0;
    }

    public static boolean isMoreVisible(int m1, int m2) {
        if (Modifier.isPrivate(m1)) {
            return false;
        }
        if (isPackage(m1)) {
            return Modifier.isPrivate(m2);
        }
        if (Modifier.isProtected(m1)) {
            return /* private package */(Modifier.isPrivate(m2) || isPackage(m2));
        }
        if (Modifier.isPublic(m1)) {
            return /* private package protected */!Modifier.isPublic(m2);
        }
        throw new RuntimeException("bad modifier: " + m1);
    }

    private static boolean isPackage(int i) {
        return (0 == (i & (Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED)));
    }

    private void interTypeConflictError(ConcreteTypeMunger m1, ConcreteTypeMunger m2) {
        // XXX this works only if we ignore separate compilation issues
        // XXX dual errors possible if (this instanceof BcelObjectType) return;
        /*
         * if (m1.getMunger().getKind() == ResolvedTypeMunger.Field && m2.getMunger().getKind() == ResolvedTypeMunger.Field) { // if
         * *exactly* the same, it's ok return true; }
         */
        // System.err.println("conflict at " + m2.getSourceLocation());
        getWorld().showMessage(
                IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_CONFLICT, m1.getAspectType().getName(),
                        m2.getSignature(), m2.getAspectType().getName()),
                m2.getSourceLocation(), getSourceLocation());
        // return false;
    }

    public ResolvedMember lookupSyntheticMember(Member member) {
        // ??? horribly inefficient
        // for (Iterator i =
        // System.err.println("lookup " + member + " in " + interTypeMungers);
        for (ConcreteTypeMunger m : interTypeMungers) {
            ResolvedMember ret = m.getMatchingSyntheticMember(member);
            if (ret != null) {
                // System.err.println("   found: " + ret);
                return ret;
            }
        }

        // Handling members for the new array join point
        if (world.isJoinpointArrayConstructionEnabled() && this.isArray()) {
            if (member.getKind() == Member.CONSTRUCTOR) {
                ResolvedMemberImpl ret = new ResolvedMemberImpl(Member.CONSTRUCTOR, this, Modifier.PUBLIC,
                        UnresolvedType.VOID, "<init>", world.resolve(member.getParameterTypes()));
                // Give the parameters names - they are going to be the dimensions uses to build the array (dim0 > dimN)
                int count = ret.getParameterTypes().length;
                String[] paramNames = new String[count];
                for (int i = 0; i < count; i++) {
                    paramNames[i] = new StringBuffer("dim").append(i).toString();
                }
                ret.setParameterNames(paramNames);
                return ret;
            }
        }

        // if (this.getSuperclass() != ResolvedType.OBJECT &&
        // this.getSuperclass() != null) {
        // return getSuperclass().lookupSyntheticMember(member);
        // }

        return null;
    }

    static class SuperClassWalker implements Iterator<ResolvedType> {

        private ResolvedType curr;
        private SuperInterfaceWalker iwalker;
        private boolean wantGenerics;

        public SuperClassWalker(ResolvedType type, SuperInterfaceWalker iwalker, boolean genericsAware) {
            this.curr = type;
            this.iwalker = iwalker;
            this.wantGenerics = genericsAware;
        }

        @Override
        public boolean hasNext() {
            return curr != null;
        }

        @Override
        public ResolvedType next() {
            ResolvedType ret = curr;
            if (!wantGenerics && ret.isParameterizedOrGenericType()) {
                ret = ret.getRawType();
            }
            iwalker.push(ret); // tell the interface walker about another class whose interfaces need visiting
            curr = curr.getSuperclass();
            return ret;
        }

        @Override
        public void remove() {
            throw new UnsupportedOperationException();
        }
    }

    static class SuperInterfaceWalker implements Iterator<ResolvedType> {

        private Getter<ResolvedType, ResolvedType> ifaceGetter;
        Iterator<ResolvedType> delegate = null;
        public Queue<ResolvedType> toPersue = new LinkedList<ResolvedType>();
        public Set<ResolvedType> visited = new HashSet<ResolvedType>();

        SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter) {
            this.ifaceGetter = ifaceGetter;
        }

        SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter, ResolvedType interfaceType) {
            this.ifaceGetter = ifaceGetter;
            this.delegate = Iterators.one(interfaceType);
        }

        @Override
        public boolean hasNext() {
            if (delegate == null || !delegate.hasNext()) {
                // either we set it up or we have run out, is there anything else to look at?
                if (toPersue.isEmpty()) {
                    return false;
                }
                do {
                    ResolvedType next = toPersue.remove();
                    visited.add(next);
                    delegate = ifaceGetter.get(next); // retrieve interfaces from a class or another interface
                } while (!delegate.hasNext() && !toPersue.isEmpty());
            }
            return delegate.hasNext();
        }

        public void push(ResolvedType ret) {
            toPersue.add(ret);
        }

        @Override
        public ResolvedType next() {
            ResolvedType next = delegate.next();
            // BUG should check for generics and erase?
            // if (!visited.contains(next)) {
            // visited.add(next);
            if (visited.add(next)) {
                toPersue.add(next); // pushes on interfaces already visited?
            }
            return next;
        }

        @Override
        public void remove() {
            throw new UnsupportedOperationException();
        }
    }

    public void clearInterTypeMungers() {
        if (isRawType()) {
            ResolvedType genericType = getGenericType();
            if (genericType.isRawType()) { // ERROR SITUATION: PR341926
                // For some reason the raw type is pointing to another raw form (possibly itself)
                System.err.println("DebugFor341926: Type " + this.getName() + " has an incorrect generic form");
            } else {
                genericType.clearInterTypeMungers();
            }
        }
        // interTypeMungers.clear();
        // BUG? Why can't this be clear() instead: 293620 c6
        interTypeMungers = new ArrayList<ConcreteTypeMunger>();
    }

    public boolean isTopmostImplementor(ResolvedType interfaceType) {
        boolean b = true;
        if (isInterface()) {
            b = false;
        } else if (!interfaceType.isAssignableFrom(this, true)) {
            b = false;
        } else {
            ResolvedType superclass = this.getSuperclass();
            if (superclass.isMissing()) {
                b = true; // we don't know anything about supertype, and it can't be exposed to weaver
            } else if (interfaceType.isAssignableFrom(superclass, true)) { // check that I'm truly the topmost implementor
                b = false;
            }
        }
        // System.out.println("is " + getName() + " topmostimplementor of " + interfaceType + "? " + b);
        return b;
    }

    public ResolvedType getTopmostImplementor(ResolvedType interfaceType) {
        if (isInterface()) {
            return null;
        }
        if (!interfaceType.isAssignableFrom(this)) {
            return null;
        }
        // Check if my super class is an implementor?
        ResolvedType higherType = this.getSuperclass().getTopmostImplementor(interfaceType);
        if (higherType != null) {
            return higherType;
        }
        return this;
    }

    public List<ResolvedMember> getExposedPointcuts() {
        List<ResolvedMember> ret = new ArrayList<ResolvedMember>();
        if (getSuperclass() != null) {
            ret.addAll(getSuperclass().getExposedPointcuts());
        }

        for (ResolvedType type : getDeclaredInterfaces()) {
            addPointcutsResolvingConflicts(ret, Arrays.asList(type.getDeclaredPointcuts()), false);
        }

        addPointcutsResolvingConflicts(ret, Arrays.asList(getDeclaredPointcuts()), true);

        for (ResolvedMember member : ret) {
            ResolvedPointcutDefinition inherited = (ResolvedPointcutDefinition) member;
            if (inherited != null && inherited.isAbstract()) {
                if (!this.isAbstract()) {
                    getWorld().showMessage(IMessage.ERROR,
                            WeaverMessages.format(WeaverMessages.POINCUT_NOT_CONCRETE, inherited, this.getName()),
                            inherited.getSourceLocation(), this.getSourceLocation());
                }
            }
        }
        return ret;
    }

    private void addPointcutsResolvingConflicts(List<ResolvedMember> acc, List<ResolvedMember> added,
            boolean isOverriding) {
        for (Iterator<ResolvedMember> i = added.iterator(); i.hasNext();) {
            ResolvedPointcutDefinition toAdd = (ResolvedPointcutDefinition) i.next();
            for (Iterator<ResolvedMember> j = acc.iterator(); j.hasNext();) {
                ResolvedPointcutDefinition existing = (ResolvedPointcutDefinition) j.next();
                if (toAdd == null || existing == null || existing == toAdd) {
                    continue;
                }
                UnresolvedType pointcutDeclaringTypeUT = existing.getDeclaringType();
                if (pointcutDeclaringTypeUT != null) {
                    ResolvedType pointcutDeclaringType = pointcutDeclaringTypeUT.resolve(getWorld());
                    if (!isVisible(existing.getModifiers(), pointcutDeclaringType, this)) {
                        // if they intended to override it but it is not visible,
                        // give them a nicer message
                        if (existing.isAbstract() && conflictingSignature(existing, toAdd)) {
                            getWorld().showMessage(IMessage.ERROR,
                                    WeaverMessages.format(WeaverMessages.POINTCUT_NOT_VISIBLE,
                                            existing.getDeclaringType().getName() + "." + existing.getName() + "()",
                                            this.getName()),
                                    toAdd.getSourceLocation(), null);
                            j.remove();
                        }
                        continue;
                    }
                }
                if (conflictingSignature(existing, toAdd)) {
                    if (isOverriding) {
                        checkLegalOverride(existing, toAdd, 0x00, null);
                        j.remove();
                    } else {
                        getWorld().showMessage(IMessage.ERROR,
                                WeaverMessages.format(WeaverMessages.CONFLICTING_INHERITED_POINTCUTS,
                                        this.getName() + toAdd.getSignature()),
                                existing.getSourceLocation(), toAdd.getSourceLocation());
                        j.remove();
                    }
                }
            }
            acc.add(toAdd);
        }
    }

    public ISourceLocation getSourceLocation() {
        return null;
    }

    public boolean isExposedToWeaver() {
        return false;
    }

    public WeaverStateInfo getWeaverState() {
        return null;
    }

    /**
     * Overridden by ReferenceType to return a sensible answer for parameterized and raw types.
     * 
     * @return
     */
    public ReferenceType getGenericType() {
        // if (!(isParameterizedType() || isRawType()))
        // throw new BCException("The type " + getBaseName() + " is not parameterized or raw - it has no generic type");
        return null;
    }

    @Override
    public ResolvedType getRawType() {
        return super.getRawType().resolve(world);
    }

    public ResolvedType parameterizedWith(UnresolvedType[] typeParameters) {
        if (!(isGenericType() || isParameterizedType())) {
            return this;
        }
        return TypeFactory.createParameterizedType(this.getGenericType(), typeParameters, getWorld());
    }

    /**
     * Iff I am a parameterized type, and any of my parameters are type variable references (or nested parameterized types), 
     * return a version with those type parameters replaced in accordance with the passed bindings.
     */
    @Override
    public UnresolvedType parameterize(Map<String, UnresolvedType> typeBindings) {
        if (!isParameterizedType()) {
            // throw new IllegalStateException("Can't parameterize a type that is not a parameterized type");
            return this;
        }
        boolean workToDo = false;
        for (int i = 0; i < typeParameters.length; i++) {
            if (typeParameters[i].isTypeVariableReference() || (typeParameters[i] instanceof BoundedReferenceType)
                    || typeParameters[i].isParameterizedType()) {
                workToDo = true;
            }
        }
        if (!workToDo) {
            return this;
        } else {
            UnresolvedType[] newTypeParams = new UnresolvedType[typeParameters.length];
            for (int i = 0; i < newTypeParams.length; i++) {
                newTypeParams[i] = typeParameters[i];
                if (newTypeParams[i].isTypeVariableReference()) {
                    TypeVariableReferenceType tvrt = (TypeVariableReferenceType) newTypeParams[i];
                    UnresolvedType binding = typeBindings.get(tvrt.getTypeVariable().getName());
                    if (binding != null) {
                        newTypeParams[i] = binding;
                    }
                } else if (newTypeParams[i] instanceof BoundedReferenceType) {
                    BoundedReferenceType brType = (BoundedReferenceType) newTypeParams[i];
                    newTypeParams[i] = brType.parameterize(typeBindings);
                    // brType.parameterize(typeBindings)
                } else if (newTypeParams[i].isParameterizedType()) {
                    newTypeParams[i] = newTypeParams[i].parameterize(typeBindings);
                }
            }
            return TypeFactory.createParameterizedType(getGenericType(), newTypeParams, getWorld());
        }
    }

    // public boolean hasParameterizedSuperType() {
    // getParameterizedSuperTypes();
    // return parameterizedSuperTypes.length > 0;
    // }

    // public boolean hasGenericSuperType() {
    // ResolvedType[] superTypes = getDeclaredInterfaces();
    // for (int i = 0; i < superTypes.length; i++) {
    // if (superTypes[i].isGenericType())
    // return true;
    // }
    // return false;
    // }

    // private ResolvedType[] parameterizedSuperTypes = null;

    /**
     * Similar to the above method, but accumulates the super types
     * 
     * @return
     */
    // public ResolvedType[] getParameterizedSuperTypes() {
    // if (parameterizedSuperTypes != null)
    // return parameterizedSuperTypes;
    // List accumulatedTypes = new ArrayList();
    // accumulateParameterizedSuperTypes(this, accumulatedTypes);
    // ResolvedType[] ret = new ResolvedType[accumulatedTypes.size()];
    // parameterizedSuperTypes = (ResolvedType[]) accumulatedTypes.toArray(ret);
    // return parameterizedSuperTypes;
    // }
    // private void accumulateParameterizedSuperTypes(ResolvedType forType, List
    // parameterizedTypeList) {
    // if (forType.isParameterizedType()) {
    // parameterizedTypeList.add(forType);
    // }
    // if (forType.getSuperclass() != null) {
    // accumulateParameterizedSuperTypes(forType.getSuperclass(),
    // parameterizedTypeList);
    // }
    // ResolvedType[] interfaces = forType.getDeclaredInterfaces();
    // for (int i = 0; i < interfaces.length; i++) {
    // accumulateParameterizedSuperTypes(interfaces[i], parameterizedTypeList);
    // }
    // }
    /**
     * @return true if assignable to java.lang.Exception
     */
    public boolean isException() {
        return (world.getCoreType(UnresolvedType.JL_EXCEPTION).isAssignableFrom(this));
    }

    /**
     * @return true if it is an exception and it is a checked one, false otherwise.
     */
    public boolean isCheckedException() {
        if (!isException()) {
            return false;
        }
        if (world.getCoreType(UnresolvedType.RUNTIME_EXCEPTION).isAssignableFrom(this)) {
            return false;
        }
        return true;
    }

    /**
     * Determines if variables of this type could be assigned values of another with lots of help. java.lang.Object is convertable
     * from all types. A primitive type is convertable from X iff it's assignable from X. A reference type is convertable from X iff
     * it's coerceable from X. In other words, X isConvertableFrom Y iff the compiler thinks that _some_ value of Y could be
     * assignable to a variable of type X without loss of precision.
     * 
     * @param other the other type
     * @param world the {@link World} in which the possible assignment should be checked.
     * @return true iff variables of this type could be assigned values of other with possible conversion
     */
    public final boolean isConvertableFrom(ResolvedType other) {

        // // version from TypeX
        // if (this.equals(OBJECT)) return true;
        // if (this.isPrimitiveType() || other.isPrimitiveType()) return
        // this.isAssignableFrom(other);
        // return this.isCoerceableFrom(other);
        //

        // version from ResolvedTypeX
        if (this.equals(OBJECT)) {
            return true;
        }
        if (world.isInJava5Mode()) {
            if (this.isPrimitiveType() ^ other.isPrimitiveType()) { // If one is
                // primitive
                // and the
                // other
                // isnt
                if (validBoxing.contains(this.getSignature() + other.getSignature())) {
                    return true;
                }
            }
        }
        if (this.isPrimitiveType() || other.isPrimitiveType()) {
            return this.isAssignableFrom(other);
        }
        return this.isCoerceableFrom(other);
    }

    /**
     * Determines if the variables of this type could be assigned values of another type without casting. This still allows for
     * assignment conversion as per JLS 2ed 5.2. For object types, this means supertypeOrEqual(THIS, OTHER).
     * 
     * @param other the other type
     * @param world the {@link World} in which the possible assignment should be checked.
     * @return true iff variables of this type could be assigned values of other without casting
     * @throws NullPointerException if other is null
     */
    public abstract boolean isAssignableFrom(ResolvedType other);

    public abstract boolean isAssignableFrom(ResolvedType other, boolean allowMissing);

    /**
     * Determines if values of another type could possibly be cast to this type. The rules followed are from JLS 2ed 5.5,
     * "Casting Conversion".
     * <p/>
     * <p>
     * This method should be commutative, i.e., for all UnresolvedType a, b and all World w:
     * <p/>
     * <blockquote>
     * 
     * <pre>
     * a.isCoerceableFrom(b, w) == b.isCoerceableFrom(a, w)
     * </pre>
     * 
     * </blockquote>
     * 
     * @param other the other type
     * @param world the {@link World} in which the possible coersion should be checked.
     * @return true iff values of other could possibly be cast to this type.
     * @throws NullPointerException if other is null.
     */
    public abstract boolean isCoerceableFrom(ResolvedType other);

    public boolean needsNoConversionFrom(ResolvedType o) {
        return isAssignableFrom(o);
    }

    public String getSignatureForAttribute() {
        return signature; // Assume if this is being called that it is for a
        // simple type (eg. void, int, etc)
    }

    private FuzzyBoolean parameterizedWithTypeVariable = FuzzyBoolean.MAYBE;

    /**
     * return true if the parameterization of this type includes a member type variable. Member type variables occur in generic
     * methods/ctors.
     */
    public boolean isParameterizedWithTypeVariable() {
        // MAYBE means we haven't worked it out yet...
        if (parameterizedWithTypeVariable == FuzzyBoolean.MAYBE) {

            // if there are no type parameters then we cant be...
            if (typeParameters == null || typeParameters.length == 0) {
                parameterizedWithTypeVariable = FuzzyBoolean.NO;
                return false;
            }

            for (int i = 0; i < typeParameters.length; i++) {
                ResolvedType aType = (ResolvedType) typeParameters[i];
                if (aType.isTypeVariableReference()
                // Changed according to the problems covered in bug 222648
                // Don't care what kind of type variable - the fact that there
                // is one
                // at all means we can't risk caching it against we get confused
                // later
                // by another variation of the parameterization that just
                // happens to
                // use the same type variable name

                // assume the worst - if its definetly not a type declared one,
                // it could be anything
                // && ((TypeVariableReference)aType).getTypeVariable().
                // getDeclaringElementKind()!=TypeVariable.TYPE
                ) {
                    parameterizedWithTypeVariable = FuzzyBoolean.YES;
                    return true;
                }
                if (aType.isParameterizedType()) {
                    boolean b = aType.isParameterizedWithTypeVariable();
                    if (b) {
                        parameterizedWithTypeVariable = FuzzyBoolean.YES;
                        return true;
                    }
                }
                if (aType.isGenericWildcard()) {
                    BoundedReferenceType boundedRT = (BoundedReferenceType) aType;
                    if (boundedRT.isExtends()) {
                        boolean b = false;
                        UnresolvedType upperBound = boundedRT.getUpperBound();
                        if (upperBound.isParameterizedType()) {
                            b = ((ResolvedType) upperBound).isParameterizedWithTypeVariable();
                        } else if (upperBound.isTypeVariableReference() && ((TypeVariableReference) upperBound)
                                .getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
                            b = true;
                        }
                        if (b) {
                            parameterizedWithTypeVariable = FuzzyBoolean.YES;
                            return true;
                        }
                        // FIXME asc need to check additional interface bounds
                    }
                    if (boundedRT.isSuper()) {
                        boolean b = false;
                        UnresolvedType lowerBound = boundedRT.getLowerBound();
                        if (lowerBound.isParameterizedType()) {
                            b = ((ResolvedType) lowerBound).isParameterizedWithTypeVariable();
                        } else if (lowerBound.isTypeVariableReference() && ((TypeVariableReference) lowerBound)
                                .getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
                            b = true;
                        }
                        if (b) {
                            parameterizedWithTypeVariable = FuzzyBoolean.YES;
                            return true;
                        }
                    }
                }
            }
            parameterizedWithTypeVariable = FuzzyBoolean.NO;
        }
        return parameterizedWithTypeVariable.alwaysTrue();
    }

    protected boolean ajMembersNeedParameterization() {
        if (isParameterizedType()) {
            return true;
        }
        ResolvedType superclass = getSuperclass();
        if (superclass != null && !superclass.isMissing()) {
            return superclass.ajMembersNeedParameterization();
        }
        return false;
    }

    protected Map<String, UnresolvedType> getAjMemberParameterizationMap() {
        Map<String, UnresolvedType> myMap = getMemberParameterizationMap();
        if (myMap.isEmpty()) {
            // might extend a parameterized aspect that we also need to
            // consider...
            if (getSuperclass() != null) {
                return getSuperclass().getAjMemberParameterizationMap();
            }
        }
        return myMap;
    }

    public void setBinaryPath(String binaryPath) {
        this.binaryPath = binaryPath;
    }

    /**
     * Returns the path to the jar or class file from which this binary aspect came or null if not a binary aspect
     */
    public String getBinaryPath() {
        return binaryPath;
    }

    /**
     * Undo any temporary modifications to the type (for example it may be holding annotations temporarily whilst some matching is
     * occurring - These annotations will be added properly during weaving but sometimes for type completion they need to be held
     * here for a while).
     */
    public void ensureConsistent() {
        // Nothing to do for anything except a ReferenceType
    }

    /**
     * For an annotation type, this will return if it is marked with @Inherited
     */
    public boolean isInheritedAnnotation() {
        ensureAnnotationBitsInitialized();
        return (bits & AnnotationMarkedInherited) != 0;
    }

    /*
     * Setup the bitflags if they have not already been done.
     */
    private void ensureAnnotationBitsInitialized() {
        if ((bits & AnnotationBitsInitialized) == 0) {
            bits |= AnnotationBitsInitialized;
            // Is it marked @Inherited?
            if (hasAnnotation(UnresolvedType.AT_INHERITED)) {
                bits |= AnnotationMarkedInherited;
            }
        }
    }

    private boolean hasNewParentMungers() {
        if ((bits & MungersAnalyzed) == 0) {
            bits |= MungersAnalyzed;
            for (ConcreteTypeMunger munger : interTypeMungers) {
                ResolvedTypeMunger resolvedTypeMunger = munger.getMunger();
                if (resolvedTypeMunger != null && resolvedTypeMunger.getKind() == ResolvedTypeMunger.Parent) {
                    bits |= HasParentMunger;
                }
            }
        }
        return (bits & HasParentMunger) != 0;
    }

    public void tagAsTypeHierarchyComplete() {
        if (isParameterizedOrRawType()) {
            ReferenceType genericType = this.getGenericType();
            genericType.tagAsTypeHierarchyComplete();
            return;
        }
        bits |= TypeHierarchyCompleteBit;
    }

    public boolean isTypeHierarchyComplete() {
        if (isParameterizedOrRawType()) {
            return this.getGenericType().isTypeHierarchyComplete();
        }
        return (bits & TypeHierarchyCompleteBit) != 0;
    }

    /**
     * return the weaver version used to build this type - defaults to the most recent version unless discovered otherwise.
     * 
     * @return the (major) version, {@link WeaverVersionInfo}
     */
    public int getCompilerVersion() {
        return WeaverVersionInfo.getCurrentWeaverMajorVersion();
    }

    public boolean isPrimitiveArray() {
        return false;
    }

    public boolean isGroovyObject() {
        if ((bits & GroovyObjectInitialized) == 0) {
            ResolvedType[] intfaces = getDeclaredInterfaces();
            boolean done = false;
            // TODO do we need to walk more of these? (i.e. the interfaces interfaces and supertypes supertype). Check what groovy
            // does in the case where a hierarchy is involved and there are types in between GroovyObject/GroovyObjectSupport and
            // the type
            if (intfaces != null) {
                for (ResolvedType intface : intfaces) {
                    if (intface.getName().equals("groovy.lang.GroovyObject")) {
                        bits |= IsGroovyObject;
                        done = true;
                        break;
                    }
                }
            }
            if (!done) {
                // take a look at the supertype
                if (getSuperclass().getName().equals("groovy.lang.GroovyObjectSupport")) {
                    bits |= IsGroovyObject;
                }
            }
            bits |= GroovyObjectInitialized;
        }
        return (bits & IsGroovyObject) != 0;
    }

    public boolean isPrivilegedAspect() {
        if ((bits & IsPrivilegedBitInitialized) == 0) {
            AnnotationAJ privilegedAnnotation = getAnnotationOfType(UnresolvedType.AJC_PRIVILEGED);
            if (privilegedAnnotation != null) {
                bits |= IsPrivilegedAspect;
            }
            // TODO do we need to reset this bit if the annotations are set again ?
            bits |= IsPrivilegedBitInitialized;
        }
        return (bits & IsPrivilegedAspect) != 0;
    }

}