Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.search.similarities; import java.util.ArrayList; import java.util.List; import java.util.Locale; import org.apache.lucene.search.Explanation; /** * Language model based on the Jelinek-Mercer smoothing method. From Chengxiang * Zhai and John Lafferty. 2001. A study of smoothing methods for language * models applied to Ad Hoc information retrieval. In Proceedings of the 24th * annual international ACM SIGIR conference on Research and development in * information retrieval (SIGIR '01). ACM, New York, NY, USA, 334-342. * <p>The model has a single parameter, λ. According to said paper, the * optimal value depends on both the collection and the query. The optimal value * is around {@code 0.1} for title queries and {@code 0.7} for long queries.</p> * <p>Values should be between 0 (exclusive) and 1 (inclusive). Values near zero act score more * like a conjunction (coordinate level matching), whereas values near 1 behave * the opposite (more like pure disjunction). * @lucene.experimental */ public class LMJelinekMercerSimilarity extends LMSimilarity { /** The λ parameter. */ private final float lambda; /** Instantiates with the specified collectionModel and λ parameter. */ public LMJelinekMercerSimilarity(CollectionModel collectionModel, float lambda) { super(collectionModel); if (Float.isNaN(lambda) || lambda <= 0 || lambda > 1) { throw new IllegalArgumentException("lambda must be in the range (0 .. 1]"); } this.lambda = lambda; } /** Instantiates with the specified λ parameter. */ public LMJelinekMercerSimilarity(float lambda) { if (Float.isNaN(lambda) || lambda <= 0 || lambda > 1) { throw new IllegalArgumentException("lambda must be in the range (0 .. 1]"); } this.lambda = lambda; } @Override protected double score(BasicStats stats, double freq, double docLen) { return stats.getBoost() * Math .log(1 + ((1 - lambda) * freq / docLen) / (lambda * ((LMStats) stats).getCollectionProbability())); } @Override protected void explain(List<Explanation> subs, BasicStats stats, double freq, double docLen) { if (stats.getBoost() != 1.0d) { subs.add(Explanation.match((float) stats.getBoost(), "boost")); } subs.add(Explanation.match(lambda, "lambda")); double p = ((LMStats) stats).getCollectionProbability(); Explanation explP = Explanation.match((float) p, "P, probability that the current term is generated by the collection"); subs.add(explP); Explanation explFreq = Explanation.match((float) freq, "freq, number of occurrences of term in the document"); subs.add(explFreq); subs.add(Explanation.match((float) docLen, "dl, length of field")); super.explain(subs, stats, freq, docLen); } @Override protected Explanation explain(BasicStats stats, Explanation freq, double docLen) { List<Explanation> subs = new ArrayList<>(); explain(subs, stats, freq.getValue().doubleValue(), docLen); return Explanation.match((float) score(stats, freq.getValue().doubleValue(), docLen), "score(" + getClass().getSimpleName() + ", freq=" + freq.getValue() + "), computed as boost * " + "log(1 + ((1 - lambda) * freq / dl) /(lambda * P)) from:", subs); } /** Returns the λ parameter. */ public float getLambda() { return lambda; } @Override public String getName() { return String.format(Locale.ROOT, "Jelinek-Mercer(%f)", getLambda()); } }