Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.search.similarities; import java.util.ArrayList; import java.util.List; import java.util.Locale; import org.apache.lucene.search.Explanation; /** * Bayesian smoothing using Dirichlet priors. From Chengxiang Zhai and John * Lafferty. 2001. A study of smoothing methods for language models applied to * Ad Hoc information retrieval. In Proceedings of the 24th annual international * ACM SIGIR conference on Research and development in information retrieval * (SIGIR '01). ACM, New York, NY, USA, 334-342. * <p> * The formula as defined the paper assigns a negative score to documents that * contain the term, but with fewer occurrences than predicted by the collection * language model. The Lucene implementation returns {@code 0} for such * documents. * </p> * * @lucene.experimental */ public class LMDirichletSimilarity extends LMSimilarity { /** The μ parameter. */ private final float mu; /** Instantiates the similarity with the provided μ parameter. */ public LMDirichletSimilarity(CollectionModel collectionModel, float mu) { super(collectionModel); if (Float.isFinite(mu) == false || mu < 0) { throw new IllegalArgumentException("illegal mu value: " + mu + ", must be a non-negative finite value"); } this.mu = mu; } /** Instantiates the similarity with the provided μ parameter. */ public LMDirichletSimilarity(float mu) { if (Float.isFinite(mu) == false || mu < 0) { throw new IllegalArgumentException("illegal mu value: " + mu + ", must be a non-negative finite value"); } this.mu = mu; } /** Instantiates the similarity with the default μ value of 2000. */ public LMDirichletSimilarity(CollectionModel collectionModel) { this(collectionModel, 2000); } /** Instantiates the similarity with the default μ value of 2000. */ public LMDirichletSimilarity() { this(2000); } @Override protected double score(BasicStats stats, double freq, double docLen) { double score = stats.getBoost() * (Math.log(1 + freq / (mu * ((LMStats) stats).getCollectionProbability())) + Math.log(mu / (docLen + mu))); return score > 0.0d ? score : 0.0d; } @Override protected void explain(List<Explanation> subs, BasicStats stats, double freq, double docLen) { if (stats.getBoost() != 1.0d) { subs.add(Explanation.match((float) stats.getBoost(), "query boost")); } double p = ((LMStats) stats).getCollectionProbability(); Explanation explP = Explanation.match((float) p, "P, probability that the current term is generated by the collection"); Explanation explFreq = Explanation.match((float) freq, "freq, number of occurrences of term in the document"); subs.add(Explanation.match(mu, "mu")); Explanation weightExpl = Explanation.match( (float) Math.log(1 + freq / (mu * ((LMStats) stats).getCollectionProbability())), "term weight, computed as log(1 + freq /(mu * P)) from:", explFreq, explP); subs.add(weightExpl); subs.add(Explanation.match((float) Math.log(mu / (docLen + mu)), "document norm, computed as log(mu / (dl + mu))")); subs.add(Explanation.match((float) docLen, "dl, length of field")); super.explain(subs, stats, freq, docLen); } @Override protected Explanation explain(BasicStats stats, Explanation freq, double docLen) { List<Explanation> subs = new ArrayList<>(); explain(subs, stats, freq.getValue().doubleValue(), docLen); return Explanation.match((float) score(stats, freq.getValue().doubleValue(), docLen), "score(" + getClass().getSimpleName() + ", freq=" + freq.getValue() + "), computed as boost * " + "(term weight + document norm) from:", subs); } /** Returns the μ parameter. */ public float getMu() { return mu; } @Override public String getName() { return String.format(Locale.ROOT, "Dirichlet(%f)", getMu()); } }