org.apache.lucene.geo.Rectangle.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.lucene.geo.Rectangle.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.geo;

import static java.lang.Math.PI;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static org.apache.lucene.geo.GeoUtils.checkLatitude;
import static org.apache.lucene.geo.GeoUtils.checkLongitude;
import static org.apache.lucene.geo.GeoUtils.MAX_LAT_INCL;
import static org.apache.lucene.geo.GeoUtils.MIN_LAT_INCL;
import static org.apache.lucene.geo.GeoUtils.MAX_LAT_RADIANS;
import static org.apache.lucene.geo.GeoUtils.MAX_LON_RADIANS;
import static org.apache.lucene.geo.GeoUtils.MIN_LAT_RADIANS;
import static org.apache.lucene.geo.GeoUtils.MIN_LON_RADIANS;
import static org.apache.lucene.geo.GeoUtils.EARTH_MEAN_RADIUS_METERS;
import static org.apache.lucene.geo.GeoUtils.sloppySin;
import static org.apache.lucene.util.SloppyMath.TO_DEGREES;
import static org.apache.lucene.util.SloppyMath.asin;
import static org.apache.lucene.util.SloppyMath.cos;
import static org.apache.lucene.util.SloppyMath.toDegrees;
import static org.apache.lucene.util.SloppyMath.toRadians;

/** Represents a lat/lon rectangle. */
public class Rectangle {
    /** maximum longitude value (in degrees) */
    public final double minLat;
    /** minimum longitude value (in degrees) */
    public final double minLon;
    /** maximum latitude value (in degrees) */
    public final double maxLat;
    /** minimum latitude value (in degrees) */
    public final double maxLon;

    /**
     * Constructs a bounding box by first validating the provided latitude and longitude coordinates
     */
    public Rectangle(double minLat, double maxLat, double minLon, double maxLon) {
        GeoUtils.checkLatitude(minLat);
        GeoUtils.checkLatitude(maxLat);
        GeoUtils.checkLongitude(minLon);
        GeoUtils.checkLongitude(maxLon);
        this.minLon = minLon;
        this.maxLon = maxLon;
        this.minLat = minLat;
        this.maxLat = maxLat;
        assert maxLat >= minLat;

        // NOTE: cannot assert maxLon >= minLon since this rect could cross the dateline
    }

    @Override
    public String toString() {
        StringBuilder b = new StringBuilder();
        b.append("Rectangle(lat=");
        b.append(minLat);
        b.append(" TO ");
        b.append(maxLat);
        b.append(" lon=");
        b.append(minLon);
        b.append(" TO ");
        b.append(maxLon);
        if (maxLon < minLon) {
            b.append(" [crosses dateline!]");
        }
        b.append(")");

        return b.toString();
    }

    /** Returns true if this bounding box crosses the dateline */
    public boolean crossesDateline() {
        return maxLon < minLon;
    }

    /** returns true if rectangle (defined by minLat, maxLat, minLon, maxLon) contains the lat lon point */
    public static boolean containsPoint(final double lat, final double lon, final double minLat,
            final double maxLat, final double minLon, final double maxLon) {
        return lat >= minLat && lat <= maxLat && lon >= minLon && lon <= maxLon;
    }

    /** Compute Bounding Box for a circle using WGS-84 parameters */
    public static Rectangle fromPointDistance(final double centerLat, final double centerLon,
            final double radiusMeters) {
        checkLatitude(centerLat);
        checkLongitude(centerLon);
        final double radLat = toRadians(centerLat);
        final double radLon = toRadians(centerLon);
        // LUCENE-7143
        double radDistance = (radiusMeters + 7E-2) / EARTH_MEAN_RADIUS_METERS;
        double minLat = radLat - radDistance;
        double maxLat = radLat + radDistance;
        double minLon;
        double maxLon;

        if (minLat > MIN_LAT_RADIANS && maxLat < MAX_LAT_RADIANS) {
            double deltaLon = asin(sloppySin(radDistance) / cos(radLat));
            minLon = radLon - deltaLon;
            if (minLon < MIN_LON_RADIANS) {
                minLon += 2d * PI;
            }
            maxLon = radLon + deltaLon;
            if (maxLon > MAX_LON_RADIANS) {
                maxLon -= 2d * PI;
            }
        } else {
            // a pole is within the distance
            minLat = max(minLat, MIN_LAT_RADIANS);
            maxLat = min(maxLat, MAX_LAT_RADIANS);
            minLon = MIN_LON_RADIANS;
            maxLon = MAX_LON_RADIANS;
        }

        return new Rectangle(toDegrees(minLat), toDegrees(maxLat), toDegrees(minLon), toDegrees(maxLon));
    }

    /** maximum error from {@link #axisLat(double, double)}. logic must be prepared to handle this */
    public static final double AXISLAT_ERROR = 0.1D / EARTH_MEAN_RADIUS_METERS * TO_DEGREES;

    /**
     * Calculate the latitude of a circle's intersections with its bbox meridians.
     * <p>
     * <b>NOTE:</b> the returned value will be +/- {@link #AXISLAT_ERROR} of the actual value.
     * @param centerLat The latitude of the circle center
     * @param radiusMeters The radius of the circle in meters
     * @return A latitude
     */
    public static double axisLat(double centerLat, double radiusMeters) {
        // A spherical triangle with:
        // r is the radius of the circle in radians
        // l1 is the latitude of the circle center
        // l2 is the latitude of the point at which the circle intersect's its bbox longitudes
        // We know r is tangent to the bbox meridians at l2, therefore it is a right angle.
        // So from the law of cosines, with the angle of l1 being 90, we have:
        // cos(l1) = cos(r) * cos(l2) + sin(r) * sin(l2) * cos(90)
        // The second part cancels out because cos(90) == 0, so we have:
        // cos(l1) = cos(r) * cos(l2)
        // Solving for l2, we get:
        // l2 = acos( cos(l1) / cos(r) )
        // We ensure r is in the range (0, PI/2) and l1 in the range (0, PI/2]. This means we
        // cannot divide by 0, and we will always get a positive value in the range [0, 1) as
        // the argument to arc cosine, resulting in a range (0, PI/2].
        final double PIO2 = Math.PI / 2D;
        double l1 = toRadians(centerLat);
        double r = (radiusMeters + 7E-2) / EARTH_MEAN_RADIUS_METERS;

        // if we are within radius range of a pole, the lat is the pole itself
        if (Math.abs(l1) + r >= MAX_LAT_RADIANS) {
            return centerLat >= 0 ? MAX_LAT_INCL : MIN_LAT_INCL;
        }

        // adjust l1 as distance from closest pole, to form a right triangle with bbox meridians
        // and ensure it is in the range (0, PI/2]
        l1 = centerLat >= 0 ? PIO2 - l1 : l1 + PIO2;

        double l2 = Math.acos(Math.cos(l1) / Math.cos(r));
        assert !Double.isNaN(l2);

        // now adjust back to range [-pi/2, pi/2], ie latitude in radians
        l2 = centerLat >= 0 ? PIO2 - l2 : l2 - PIO2;

        return toDegrees(l2);
    }

    /** Returns the bounding box over an array of polygons */
    public static Rectangle fromPolygon(Polygon[] polygons) {
        // compute bounding box
        double minLat = Double.POSITIVE_INFINITY;
        double maxLat = Double.NEGATIVE_INFINITY;
        double minLon = Double.POSITIVE_INFINITY;
        double maxLon = Double.NEGATIVE_INFINITY;

        for (int i = 0; i < polygons.length; i++) {
            minLat = Math.min(polygons[i].minLat, minLat);
            maxLat = Math.max(polygons[i].maxLat, maxLat);
            minLon = Math.min(polygons[i].minLon, minLon);
            maxLon = Math.max(polygons[i].maxLon, maxLon);
        }

        return new Rectangle(minLat, maxLat, minLon, maxLon);
    }

    @Override
    public boolean equals(Object o) {
        if (this == o)
            return true;
        if (o == null || getClass() != o.getClass())
            return false;

        Rectangle rectangle = (Rectangle) o;

        if (Double.compare(rectangle.minLat, minLat) != 0)
            return false;
        if (Double.compare(rectangle.minLon, minLon) != 0)
            return false;
        if (Double.compare(rectangle.maxLat, maxLat) != 0)
            return false;
        return Double.compare(rectangle.maxLon, maxLon) == 0;

    }

    @Override
    public int hashCode() {
        int result;
        long temp;
        temp = Double.doubleToLongBits(minLat);
        result = (int) (temp ^ (temp >>> 32));
        temp = Double.doubleToLongBits(minLon);
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        temp = Double.doubleToLongBits(maxLat);
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        temp = Double.doubleToLongBits(maxLon);
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        return result;
    }
}