org.apache.lucene.geo.GeoUtils.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.lucene.geo.GeoUtils.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.geo;

import static org.apache.lucene.util.SloppyMath.TO_RADIANS;
import static org.apache.lucene.util.SloppyMath.cos;
import static org.apache.lucene.util.SloppyMath.haversinMeters;

import org.apache.lucene.index.PointValues;
import org.apache.lucene.index.PointValues.Relation;
import org.apache.lucene.util.SloppyMath;

/**
 * Basic reusable geo-spatial utility methods
 *
 * @lucene.experimental
 */
public final class GeoUtils {
    /** Minimum longitude value. */
    public static final double MIN_LON_INCL = -180.0D;

    /** Maximum longitude value. */
    public static final double MAX_LON_INCL = 180.0D;

    /** Minimum latitude value. */
    public static final double MIN_LAT_INCL = -90.0D;

    /** Maximum latitude value. */
    public static final double MAX_LAT_INCL = 90.0D;

    /** min longitude value in radians */
    public static final double MIN_LON_RADIANS = TO_RADIANS * MIN_LON_INCL;
    /** min latitude value in radians */
    public static final double MIN_LAT_RADIANS = TO_RADIANS * MIN_LAT_INCL;
    /** max longitude value in radians */
    public static final double MAX_LON_RADIANS = TO_RADIANS * MAX_LON_INCL;
    /** max latitude value in radians */
    public static final double MAX_LAT_RADIANS = TO_RADIANS * MAX_LAT_INCL;

    // WGS84 earth-ellipsoid parameters
    /** mean earth axis in meters */
    // see http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
    public static final double EARTH_MEAN_RADIUS_METERS = 6_371_008.7714;

    // No instance:
    private GeoUtils() {
    }

    /** validates latitude value is within standard +/-90 coordinate bounds */
    public static void checkLatitude(double latitude) {
        if (Double.isNaN(latitude) || latitude < MIN_LAT_INCL || latitude > MAX_LAT_INCL) {
            throw new IllegalArgumentException(
                    "invalid latitude " + latitude + "; must be between " + MIN_LAT_INCL + " and " + MAX_LAT_INCL);
        }
    }

    /** validates longitude value is within standard +/-180 coordinate bounds */
    public static void checkLongitude(double longitude) {
        if (Double.isNaN(longitude) || longitude < MIN_LON_INCL || longitude > MAX_LON_INCL) {
            throw new IllegalArgumentException("invalid longitude " + longitude + "; must be between "
                    + MIN_LON_INCL + " and " + MAX_LON_INCL);
        }
    }

    // some sloppyish stuff, do we really need this to be done in a sloppy way?
    // unless it is performance sensitive, we should try to remove.
    private static final double PIO2 = Math.PI / 2D;

    /**
     * Returns the trigonometric sine of an angle converted as a cos operation.
     * <p>
     * Note that this is not quite right... e.g. sin(0) != 0
     * <p>
     * Special cases:
     * <ul>
     *  <li>If the argument is {@code NaN} or an infinity, then the result is {@code NaN}.
     * </ul>
     * @param a an angle, in radians.
     * @return the sine of the argument.
     * @see Math#sin(double)
     */
    // TODO: deprecate/remove this? at least its no longer public.
    public static double sloppySin(double a) {
        return cos(a - PIO2);
    }

    /**
     * binary search to find the exact sortKey needed to match the specified radius
     * any sort key lte this is a query match.
     */
    public static double distanceQuerySortKey(double radius) {
        // effectively infinite
        if (radius >= haversinMeters(Double.MAX_VALUE)) {
            return haversinMeters(Double.MAX_VALUE);
        }

        // this is a search through non-negative long space only
        long lo = 0;
        long hi = Double.doubleToRawLongBits(Double.MAX_VALUE);
        while (lo <= hi) {
            long mid = (lo + hi) >>> 1;
            double sortKey = Double.longBitsToDouble(mid);
            double midRadius = haversinMeters(sortKey);
            if (midRadius == radius) {
                return sortKey;
            } else if (midRadius > radius) {
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
        }

        // not found: this is because a user can supply an arbitrary radius, one that we will never
        // calculate exactly via our haversin method.
        double ceil = Double.longBitsToDouble(lo);
        assert haversinMeters(ceil) > radius;
        return ceil;
    }

    /**
     * Compute the relation between the provided box and distance query.
     * This only works for boxes that do not cross the dateline.
     */
    public static PointValues.Relation relate(double minLat, double maxLat, double minLon, double maxLon,
            double lat, double lon, double distanceSortKey, double axisLat) {

        if (minLon > maxLon) {
            throw new IllegalArgumentException("Box crosses the dateline");
        }

        if ((lon < minLon || lon > maxLon)
                && (axisLat + Rectangle.AXISLAT_ERROR < minLat || axisLat - Rectangle.AXISLAT_ERROR > maxLat)) {
            // circle not fully inside / crossing axis
            if (SloppyMath.haversinSortKey(lat, lon, minLat, minLon) > distanceSortKey
                    && SloppyMath.haversinSortKey(lat, lon, minLat, maxLon) > distanceSortKey
                    && SloppyMath.haversinSortKey(lat, lon, maxLat, minLon) > distanceSortKey
                    && SloppyMath.haversinSortKey(lat, lon, maxLat, maxLon) > distanceSortKey) {
                // no points inside
                return Relation.CELL_OUTSIDE_QUERY;
            }
        }

        if (within90LonDegrees(lon, minLon, maxLon)
                && SloppyMath.haversinSortKey(lat, lon, minLat, minLon) <= distanceSortKey
                && SloppyMath.haversinSortKey(lat, lon, minLat, maxLon) <= distanceSortKey
                && SloppyMath.haversinSortKey(lat, lon, maxLat, minLon) <= distanceSortKey
                && SloppyMath.haversinSortKey(lat, lon, maxLat, maxLon) <= distanceSortKey) {
            // we are fully enclosed, collect everything within this subtree
            return Relation.CELL_INSIDE_QUERY;
        }

        return Relation.CELL_CROSSES_QUERY;
    }

    /** Return whether all points of {@code [minLon,maxLon]} are within 90 degrees of {@code lon}. */
    static boolean within90LonDegrees(double lon, double minLon, double maxLon) {
        if (maxLon <= lon - 180) {
            lon -= 360;
        } else if (minLon >= lon + 180) {
            lon += 360;
        }
        return maxLon - lon < 90 && lon - minLon < 90;
    }

    /**
     * Returns a positive value if points a, b, and c are arranged in counter-clockwise order,
     * negative value if clockwise, zero if collinear.
     */
    // see the "Orient2D" method described here:
    // http://www.cs.berkeley.edu/~jrs/meshpapers/robnotes.pdf
    // https://www.cs.cmu.edu/~quake/robust.html
    // Note that this one does not yet have the floating point tricks to be exact!
    public static int orient(double ax, double ay, double bx, double by, double cx, double cy) {
        double v1 = (bx - ax) * (cy - ay);
        double v2 = (cx - ax) * (by - ay);
        if (v1 > v2) {
            return 1;
        } else if (v1 < v2) {
            return -1;
        } else {
            return 0;
        }
    }

    /** uses orient method to compute whether two line segments cross */
    public static boolean lineCrossesLine(double a1x, double a1y, double b1x, double b1y, double a2x, double a2y,
            double b2x, double b2y) {
        if (orient(a2x, a2y, b2x, b2y, a1x, a1y) * orient(a2x, a2y, b2x, b2y, b1x, b1y) < 0
                && orient(a1x, a1y, b1x, b1y, a2x, a2y) * orient(a1x, a1y, b1x, b1y, b2x, b2y) < 0) {
            return true;
        }
        return false;
    }

    /** uses orient method to compute whether two line segments cross; boundaries included - returning true for
     * lines that terminate on each other.
     *
     * e.g., (plus sign) + == true, and (capital 't') T == true
     *
     * Use {@link #lineCrossesLine} to exclude lines that terminate on each other from the truth table
     **/
    public static boolean lineCrossesLineWithBoundary(double a1x, double a1y, double b1x, double b1y, double a2x,
            double a2y, double b2x, double b2y) {
        if (orient(a2x, a2y, b2x, b2y, a1x, a1y) * orient(a2x, a2y, b2x, b2y, b1x, b1y) <= 0
                && orient(a1x, a1y, b1x, b1y, a2x, a2y) * orient(a1x, a1y, b1x, b1y, b2x, b2y) <= 0) {
            return true;
        }
        return false;
    }

    /**
     * used to define the orientation of 3 points
     * -1 = Clockwise
     * 0 = Colinear
     * 1 = Counter-clockwise
     **/
    public enum WindingOrder {
        CW(-1), COLINEAR(0), CCW(1);
        private final int sign;

        WindingOrder(int sign) {
            this.sign = sign;
        }

        public int sign() {
            return sign;
        }

        public static WindingOrder fromSign(final int sign) {
            if (sign == CW.sign)
                return CW;
            if (sign == COLINEAR.sign)
                return COLINEAR;
            if (sign == CCW.sign)
                return CCW;
            throw new IllegalArgumentException("Invalid WindingOrder sign: " + sign);
        }
    }
}