Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.fitting; import java.util.Collection; import org.apache.commons.math3.analysis.ParametricUnivariateFunction; import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder; import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem; import org.apache.commons.math3.linear.DiagonalMatrix; /** * Fits points to a user-defined {@link ParametricUnivariateFunction function}. * * @since 3.4 */ public class SimpleCurveFitter extends AbstractCurveFitter { /** Function to fit. */ private final ParametricUnivariateFunction function; /** Initial guess for the parameters. */ private final double[] initialGuess; /** Maximum number of iterations of the optimization algorithm. */ private final int maxIter; /** * Contructor used by the factory methods. * * @param function Function to fit. * @param initialGuess Initial guess. Cannot be {@code null}. Its length must * be consistent with the number of parameters of the {@code function} to fit. * @param maxIter Maximum number of iterations of the optimization algorithm. */ private SimpleCurveFitter(ParametricUnivariateFunction function, double[] initialGuess, int maxIter) { this.function = function; this.initialGuess = initialGuess; this.maxIter = maxIter; } /** * Creates a curve fitter. * The maximum number of iterations of the optimization algorithm is set * to {@link Integer#MAX_VALUE}. * * @param f Function to fit. * @param start Initial guess for the parameters. Cannot be {@code null}. * Its length must be consistent with the number of parameters of the * function to fit. * @return a curve fitter. * * @see #withStartPoint(double[]) * @see #withMaxIterations(int) */ public static SimpleCurveFitter create(ParametricUnivariateFunction f, double[] start) { return new SimpleCurveFitter(f, start, Integer.MAX_VALUE); } /** * Configure the start point (initial guess). * @param newStart new start point (initial guess) * @return a new instance. */ public SimpleCurveFitter withStartPoint(double[] newStart) { return new SimpleCurveFitter(function, newStart.clone(), maxIter); } /** * Configure the maximum number of iterations. * @param newMaxIter maximum number of iterations * @return a new instance. */ public SimpleCurveFitter withMaxIterations(int newMaxIter) { return new SimpleCurveFitter(function, initialGuess, newMaxIter); } /** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int count = 0; for (WeightedObservedPoint obs : observations) { target[count] = obs.getY(); weights[count] = obs.getWeight(); ++count; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction( function, observations); // Create an optimizer for fitting the curve to the observed points. return new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(maxIter) .start(initialGuess).target(target).weight(new DiagonalMatrix(weights)) .model(model.getModelFunction(), model.getModelFunctionJacobian()).build(); } }