Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.fitting; import java.util.Collection; import org.apache.commons.math3.analysis.MultivariateVectorFunction; import org.apache.commons.math3.analysis.MultivariateMatrixFunction; import org.apache.commons.math3.analysis.ParametricUnivariateFunction; import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer; import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem; import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer; /** * Base class that contains common code for fitting parametric univariate * real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is * the independent variable and the <code>p<sub>i</sub></code> are the * <em>parameters</em>. * <br/> * A fitter will find the optimal values of the parameters by * <em>fitting</em> the curve so it remains very close to a set of * {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>, * {@code 0 <= k < N}. * <br/> * An algorithm usually performs the fit by finding the parameter * values that minimizes the objective function * <pre><code> * ∑y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>, * </code></pre> * which is actually a least-squares problem. * This class contains boilerplate code for calling the * {@link #fit(Collection)} method for obtaining the parameters. * The problem setup, such as the choice of optimization algorithm * for fitting a specific function is delegated to subclasses. * * @since 3.3 */ public abstract class AbstractCurveFitter { /** * Fits a curve. * This method computes the coefficients of the curve that best * fit the sample of observed points. * * @param points Observations. * @return the fitted parameters. */ public double[] fit(Collection<WeightedObservedPoint> points) { // Perform the fit. return getOptimizer().optimize(getProblem(points)).getPoint().toArray(); } /** * Creates an optimizer set up to fit the appropriate curve. * <p> * The default implementation uses a {@link LevenbergMarquardtOptimizer * Levenberg-Marquardt} optimizer. * </p> * @return the optimizer to use for fitting the curve to the * given {@code points}. */ protected LeastSquaresOptimizer getOptimizer() { return new LevenbergMarquardtOptimizer(); } /** * Creates a least squares problem corresponding to the appropriate curve. * * @param points Sample points. * @return the least squares problem to use for fitting the curve to the * given {@code points}. */ protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points); /** * Vector function for computing function theoretical values. */ protected static class TheoreticalValuesFunction { /** Function to fit. */ private final ParametricUnivariateFunction f; /** Observations. */ private final double[] points; /** * @param f function to fit. * @param observations Observations. */ public TheoreticalValuesFunction(final ParametricUnivariateFunction f, final Collection<WeightedObservedPoint> observations) { this.f = f; final int len = observations.size(); this.points = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { this.points[i++] = obs.getX(); } } /** * @return the model function values. */ public MultivariateVectorFunction getModelFunction() { return new MultivariateVectorFunction() { /** {@inheritDoc} */ public double[] value(double[] p) { final int len = points.length; final double[] values = new double[len]; for (int i = 0; i < len; i++) { values[i] = f.value(points[i], p); } return values; } }; } /** * @return the model function Jacobian. */ public MultivariateMatrixFunction getModelFunctionJacobian() { return new MultivariateMatrixFunction() { public double[][] value(double[] p) { final int len = points.length; final double[][] jacobian = new double[len][]; for (int i = 0; i < len; i++) { jacobian[i] = f.gradient(points[i], p); } return jacobian; } }; } } }