org.apache.commons.math.linear.EigenDecompositionImpl.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math.linear.EigenDecompositionImpl.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;

/**
 * Calculates the eigen decomposition of a real <strong>symmetric</strong>
 * matrix.
 * <p>
 * The eigen decomposition of matrix A is a set of two matrices: V and D such
 * that A = V D V<sup>T</sup>. A, V and D are all m &times; m matrices.
 * </p>
 * <p>
 * As of 2.0, this class supports only <strong>symmetric</strong> matrices, and
 * hence computes only real realEigenvalues. This implies the D matrix returned
 * by {@link #getD()} is always diagonal and the imaginary values returned
 * {@link #getImagEigenvalue(int)} and {@link #getImagEigenvalues()} are always
 * null.
 * </p>
 * <p>
 * When called with a {@link RealMatrix} argument, this implementation only uses
 * the upper part of the matrix, the part below the diagonal is not accessed at
 * all.
 * </p>
 * <p>
 * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
 * J.H. Wilkinson 'The Implicit QL Algorithm' in Wilksinson and Reinsch (1971)
 * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
 * New-York
 * </p>
 * @version $Revision: 1002040 $ $Date: 2010-09-28 09:18:31 +0200 (mar. 28 sept. 2010) $
 * @since 2.0
 */
public class EigenDecompositionImpl implements EigenDecomposition {

    /** Maximum number of iterations accepted in the implicit QL transformation */
    private byte maxIter = 30;

    /** Main diagonal of the tridiagonal matrix. */
    private double[] main;

    /** Secondary diagonal of the tridiagonal matrix. */
    private double[] secondary;

    /**
     * Transformer to tridiagonal (may be null if matrix is already
     * tridiagonal).
     */
    private TriDiagonalTransformer transformer;

    /** Real part of the realEigenvalues. */
    private double[] realEigenvalues;

    /** Imaginary part of the realEigenvalues. */
    private double[] imagEigenvalues;

    /** Eigenvectors. */
    private ArrayRealVector[] eigenvectors;

    /** Cached value of V. */
    private RealMatrix cachedV;

    /** Cached value of D. */
    private RealMatrix cachedD;

    /** Cached value of Vt. */
    private RealMatrix cachedVt;

    /**
     * Calculates the eigen decomposition of the given symmetric matrix.
     * @param matrix The <strong>symmetric</strong> matrix to decompose.
     * @param splitTolerance dummy parameter, present for backward compatibility only.
     * @exception InvalidMatrixException (wrapping a
     * {@link org.apache.commons.math.ConvergenceException} if algorithm
     * fails to converge
     */
    public EigenDecompositionImpl(final RealMatrix matrix, final double splitTolerance)
            throws InvalidMatrixException {
        if (isSymmetric(matrix)) {
            transformToTridiagonal(matrix);
            findEigenVectors(transformer.getQ().getData());
        } else {
            // as of 2.0, non-symmetric matrices (i.e. complex eigenvalues) are
            // NOT supported
            // see issue https://issues.apache.org/jira/browse/MATH-235
            throw new InvalidMatrixException(LocalizedFormats.ASSYMETRIC_EIGEN_NOT_SUPPORTED);
        }
    }

    /**
     * Calculates the eigen decomposition of the symmetric tridiagonal
     * matrix.  The Householder matrix is assumed to be the identity matrix.
     * @param main Main diagonal of the symmetric triadiagonal form
     * @param secondary Secondary of the tridiagonal form
     * @param splitTolerance dummy parameter, present for backward compatibility only.
     * @exception InvalidMatrixException (wrapping a
     * {@link org.apache.commons.math.ConvergenceException} if algorithm
     * fails to converge
     */
    public EigenDecompositionImpl(final double[] main, final double[] secondary, final double splitTolerance)
            throws InvalidMatrixException {
        this.main = main.clone();
        this.secondary = secondary.clone();
        transformer = null;
        final int size = main.length;
        double[][] z = new double[size][size];
        for (int i = 0; i < size; i++) {
            z[i][i] = 1.0;
        }
        findEigenVectors(z);
    }

    /**
     * Check if a matrix is symmetric.
     * @param matrix
     *            matrix to check
     * @return true if matrix is symmetric
     */
    private boolean isSymmetric(final RealMatrix matrix) {
        final int rows = matrix.getRowDimension();
        final int columns = matrix.getColumnDimension();
        final double eps = 10 * rows * columns * MathUtils.EPSILON;
        for (int i = 0; i < rows; ++i) {
            for (int j = i + 1; j < columns; ++j) {
                final double mij = matrix.getEntry(i, j);
                final double mji = matrix.getEntry(j, i);
                if (FastMath.abs(mij - mji) > (FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) {
                    return false;
                }
            }
        }
        return true;
    }

    /** {@inheritDoc} */
    public RealMatrix getV() throws InvalidMatrixException {

        if (cachedV == null) {
            final int m = eigenvectors.length;
            cachedV = MatrixUtils.createRealMatrix(m, m);
            for (int k = 0; k < m; ++k) {
                cachedV.setColumnVector(k, eigenvectors[k]);
            }
        }
        // return the cached matrix
        return cachedV;

    }

    /** {@inheritDoc} */
    public RealMatrix getD() throws InvalidMatrixException {
        if (cachedD == null) {
            // cache the matrix for subsequent calls
            cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);
        }
        return cachedD;
    }

    /** {@inheritDoc} */
    public RealMatrix getVT() throws InvalidMatrixException {

        if (cachedVt == null) {
            final int m = eigenvectors.length;
            cachedVt = MatrixUtils.createRealMatrix(m, m);
            for (int k = 0; k < m; ++k) {
                cachedVt.setRowVector(k, eigenvectors[k]);
            }

        }

        // return the cached matrix
        return cachedVt;
    }

    /** {@inheritDoc} */
    public double[] getRealEigenvalues() throws InvalidMatrixException {
        return realEigenvalues.clone();
    }

    /** {@inheritDoc} */
    public double getRealEigenvalue(final int i) throws InvalidMatrixException, ArrayIndexOutOfBoundsException {
        return realEigenvalues[i];
    }

    /** {@inheritDoc} */
    public double[] getImagEigenvalues() throws InvalidMatrixException {
        return imagEigenvalues.clone();
    }

    /** {@inheritDoc} */
    public double getImagEigenvalue(final int i) throws InvalidMatrixException, ArrayIndexOutOfBoundsException {
        return imagEigenvalues[i];
    }

    /** {@inheritDoc} */
    public RealVector getEigenvector(final int i) throws InvalidMatrixException, ArrayIndexOutOfBoundsException {
        return eigenvectors[i].copy();
    }

    /**
     * Return the determinant of the matrix
     * @return determinant of the matrix
     */
    public double getDeterminant() {
        double determinant = 1;
        for (double lambda : realEigenvalues) {
            determinant *= lambda;
        }
        return determinant;
    }

    /** {@inheritDoc} */
    public DecompositionSolver getSolver() {
        return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
    }

    /** Specialized solver. */
    private static class Solver implements DecompositionSolver {

        /** Real part of the realEigenvalues. */
        private double[] realEigenvalues;

        /** Imaginary part of the realEigenvalues. */
        private double[] imagEigenvalues;

        /** Eigenvectors. */
        private final ArrayRealVector[] eigenvectors;

        /**
         * Build a solver from decomposed matrix.
         * @param realEigenvalues
         *            real parts of the eigenvalues
         * @param imagEigenvalues
         *            imaginary parts of the eigenvalues
         * @param eigenvectors
         *            eigenvectors
         */
        private Solver(final double[] realEigenvalues, final double[] imagEigenvalues,
                final ArrayRealVector[] eigenvectors) {
            this.realEigenvalues = realEigenvalues;
            this.imagEigenvalues = imagEigenvalues;
            this.eigenvectors = eigenvectors;
        }

        /**
         * Solve the linear equation A &times; X = B for symmetric matrices A.
         * <p>
         * This method only find exact linear solutions, i.e. solutions for
         * which ||A &times; X - B|| is exactly 0.
         * </p>
         * @param b
         *            right-hand side of the equation A &times; X = B
         * @return a vector X that minimizes the two norm of A &times; X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         * @exception InvalidMatrixException
         *                if decomposed matrix is singular
         */
        public double[] solve(final double[] b) throws IllegalArgumentException, InvalidMatrixException {

            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            if (b.length != m) {
                throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.VECTOR_LENGTH_MISMATCH,
                        b.length, m);
            }

            final double[] bp = new double[m];
            for (int i = 0; i < m; ++i) {
                final ArrayRealVector v = eigenvectors[i];
                final double[] vData = v.getDataRef();
                final double s = v.dotProduct(b) / realEigenvalues[i];
                for (int j = 0; j < m; ++j) {
                    bp[j] += s * vData[j];
                }
            }

            return bp;

        }

        /**
         * Solve the linear equation A &times; X = B for symmetric matrices A.
         * <p>
         * This method only find exact linear solutions, i.e. solutions for
         * which ||A &times; X - B|| is exactly 0.
         * </p>
         * @param b
         *            right-hand side of the equation A &times; X = B
         * @return a vector X that minimizes the two norm of A &times; X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         * @exception InvalidMatrixException
         *                if decomposed matrix is singular
         */
        public RealVector solve(final RealVector b) throws IllegalArgumentException, InvalidMatrixException {

            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            if (b.getDimension() != m) {
                throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.VECTOR_LENGTH_MISMATCH,
                        b.getDimension(), m);
            }

            final double[] bp = new double[m];
            for (int i = 0; i < m; ++i) {
                final ArrayRealVector v = eigenvectors[i];
                final double[] vData = v.getDataRef();
                final double s = v.dotProduct(b) / realEigenvalues[i];
                for (int j = 0; j < m; ++j) {
                    bp[j] += s * vData[j];
                }
            }

            return new ArrayRealVector(bp, false);

        }

        /**
         * Solve the linear equation A &times; X = B for symmetric matrices A.
         * <p>
         * This method only find exact linear solutions, i.e. solutions for
         * which ||A &times; X - B|| is exactly 0.
         * </p>
         * @param b
         *            right-hand side of the equation A &times; X = B
         * @return a matrix X that minimizes the two norm of A &times; X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         * @exception InvalidMatrixException
         *                if decomposed matrix is singular
         */
        public RealMatrix solve(final RealMatrix b) throws IllegalArgumentException, InvalidMatrixException {

            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            if (b.getRowDimension() != m) {
                throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
                        b.getRowDimension(), b.getColumnDimension(), m, "n");
            }

            final int nColB = b.getColumnDimension();
            final double[][] bp = new double[m][nColB];
            for (int k = 0; k < nColB; ++k) {
                for (int i = 0; i < m; ++i) {
                    final ArrayRealVector v = eigenvectors[i];
                    final double[] vData = v.getDataRef();
                    double s = 0;
                    for (int j = 0; j < m; ++j) {
                        s += v.getEntry(j) * b.getEntry(j, k);
                    }
                    s /= realEigenvalues[i];
                    for (int j = 0; j < m; ++j) {
                        bp[j][k] += s * vData[j];
                    }
                }
            }

            return MatrixUtils.createRealMatrix(bp);

        }

        /**
         * Check if the decomposed matrix is non-singular.
         * @return true if the decomposed matrix is non-singular
         */
        public boolean isNonSingular() {
            for (int i = 0; i < realEigenvalues.length; ++i) {
                if ((realEigenvalues[i] == 0) && (imagEigenvalues[i] == 0)) {
                    return false;
                }
            }
            return true;
        }

        /**
         * Get the inverse of the decomposed matrix.
         * @return inverse matrix
         * @throws InvalidMatrixException
         *             if decomposed matrix is singular
         */
        public RealMatrix getInverse() throws InvalidMatrixException {

            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            final double[][] invData = new double[m][m];

            for (int i = 0; i < m; ++i) {
                final double[] invI = invData[i];
                for (int j = 0; j < m; ++j) {
                    double invIJ = 0;
                    for (int k = 0; k < m; ++k) {
                        final double[] vK = eigenvectors[k].getDataRef();
                        invIJ += vK[i] * vK[j] / realEigenvalues[k];
                    }
                    invI[j] = invIJ;
                }
            }
            return MatrixUtils.createRealMatrix(invData);

        }

    }

    /**
     * Transform matrix to tridiagonal.
     * @param matrix
     *            matrix to transform
     */
    private void transformToTridiagonal(final RealMatrix matrix) {

        // transform the matrix to tridiagonal
        transformer = new TriDiagonalTransformer(matrix);
        main = transformer.getMainDiagonalRef();
        secondary = transformer.getSecondaryDiagonalRef();

    }

    /**
     * Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
     * @param householderMatrix Householder matrix of the transformation
     *  to tri-diagonal form.
     */
    private void findEigenVectors(double[][] householderMatrix) {

        double[][] z = householderMatrix.clone();
        final int n = main.length;
        realEigenvalues = new double[n];
        imagEigenvalues = new double[n];
        double[] e = new double[n];
        for (int i = 0; i < n - 1; i++) {
            realEigenvalues[i] = main[i];
            e[i] = secondary[i];
        }
        realEigenvalues[n - 1] = main[n - 1];
        e[n - 1] = 0.0;

        // Determine the largest main and secondary value in absolute term.
        double maxAbsoluteValue = 0.0;
        for (int i = 0; i < n; i++) {
            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(realEigenvalues[i]);
            }
            if (FastMath.abs(e[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(e[i]);
            }
        }
        // Make null any main and secondary value too small to be significant
        if (maxAbsoluteValue != 0.0) {
            for (int i = 0; i < n; i++) {
                if (FastMath.abs(realEigenvalues[i]) <= MathUtils.EPSILON * maxAbsoluteValue) {
                    realEigenvalues[i] = 0.0;
                }
                if (FastMath.abs(e[i]) <= MathUtils.EPSILON * maxAbsoluteValue) {
                    e[i] = 0.0;
                }
            }
        }

        for (int j = 0; j < n; j++) {
            int its = 0;
            int m;
            do {
                for (m = j; m < n - 1; m++) {
                    double delta = FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]);
                    if (FastMath.abs(e[m]) + delta == delta) {
                        break;
                    }
                }
                if (m != j) {
                    if (its == maxIter)
                        throw new InvalidMatrixException(new MaxIterationsExceededException(maxIter));
                    its++;
                    double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
                    double t = FastMath.sqrt(1 + q * q);
                    if (q < 0.0) {
                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
                    } else {
                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
                    }
                    double u = 0.0;
                    double s = 1.0;
                    double c = 1.0;
                    int i;
                    for (i = m - 1; i >= j; i--) {
                        double p = s * e[i];
                        double h = c * e[i];
                        if (FastMath.abs(p) >= FastMath.abs(q)) {
                            c = q / p;
                            t = FastMath.sqrt(c * c + 1.0);
                            e[i + 1] = p * t;
                            s = 1.0 / t;
                            c = c * s;
                        } else {
                            s = p / q;
                            t = FastMath.sqrt(s * s + 1.0);
                            e[i + 1] = q * t;
                            c = 1.0 / t;
                            s = s * c;
                        }
                        if (e[i + 1] == 0.0) {
                            realEigenvalues[i + 1] -= u;
                            e[m] = 0.0;
                            break;
                        }
                        q = realEigenvalues[i + 1] - u;
                        t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
                        u = s * t;
                        realEigenvalues[i + 1] = q + u;
                        q = c * t - h;
                        for (int ia = 0; ia < n; ia++) {
                            p = z[ia][i + 1];
                            z[ia][i + 1] = s * z[ia][i] + c * p;
                            z[ia][i] = c * z[ia][i] - s * p;
                        }
                    }
                    if (t == 0.0 && i >= j)
                        continue;
                    realEigenvalues[j] -= u;
                    e[j] = q;
                    e[m] = 0.0;
                }
            } while (m != j);
        }

        //Sort the eigen values (and vectors) in increase order
        for (int i = 0; i < n; i++) {
            int k = i;
            double p = realEigenvalues[i];
            for (int j = i + 1; j < n; j++) {
                if (realEigenvalues[j] > p) {
                    k = j;
                    p = realEigenvalues[j];
                }
            }
            if (k != i) {
                realEigenvalues[k] = realEigenvalues[i];
                realEigenvalues[i] = p;
                for (int j = 0; j < n; j++) {
                    p = z[j][i];
                    z[j][i] = z[j][k];
                    z[j][k] = p;
                }
            }
        }

        // Determine the largest eigen value in absolute term.
        maxAbsoluteValue = 0.0;
        for (int i = 0; i < n; i++) {
            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(realEigenvalues[i]);
            }
        }
        // Make null any eigen value too small to be significant
        if (maxAbsoluteValue != 0.0) {
            for (int i = 0; i < n; i++) {
                if (FastMath.abs(realEigenvalues[i]) < MathUtils.EPSILON * maxAbsoluteValue) {
                    realEigenvalues[i] = 0.0;
                }
            }
        }
        eigenvectors = new ArrayRealVector[n];
        double[] tmp = new double[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                tmp[j] = z[j][i];
            }
            eigenvectors[i] = new ArrayRealVector(tmp);
        }
    }
}