Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.linear; /** * An interface to classes that implement an algorithm to calculate the * eigen decomposition of a real matrix. * <p>The eigen decomposition of matrix A is a set of two matrices: * V and D such that A = V × D × V<sup>T</sup>. * A, V and D are all m × m matrices.</p> * <p>This interface is similar in spirit to the <code>EigenvalueDecomposition</code> * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> * library, with the following changes:</p> * <ul> * <li>a {@link #getVT() getVt} method has been added,</li> * <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int) * getImagEigenvalue} methods to pick up a single eigenvalue have been added,</li> * <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a single * eigenvector has been added,</li> * <li>a {@link #getDeterminant() getDeterminant} method has been added.</li> * <li>a {@link #getSolver() getSolver} method has been added.</li> * </ul> * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a> * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a> * @version $Revision: 997726 $ $Date: 2010-09-16 14:39:51 +0200 (jeu. 16 sept. 2010) $ * @since 2.0 */ public interface EigenDecomposition { /** * Returns the matrix V of the decomposition. * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> * <p>The columns of V are the eigenvectors of the original matrix.</p> * <p>No assumption is made about the orientation of the system axes formed * by the columns of V (e.g. in a 3-dimension space, V can form a left- * or right-handed system).</p> * @return the V matrix */ RealMatrix getV(); /** * Returns the block diagonal matrix D of the decomposition. * <p>D is a block diagonal matrix.</p> * <p>Real eigenvalues are on the diagonal while complex values are on * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.</p> * @return the D matrix * @see #getRealEigenvalues() * @see #getImagEigenvalues() */ RealMatrix getD(); /** * Returns the transpose of the matrix V of the decomposition. * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> * <p>The columns of V are the eigenvectors of the original matrix.</p> * <p>No assumption is made about the orientation of the system axes formed * by the columns of V (e.g. in a 3-dimension space, V can form a left- * or right-handed system).</p> * @return the transpose of the V matrix */ RealMatrix getVT(); /** * Returns a copy of the real parts of the eigenvalues of the original matrix. * @return a copy of the real parts of the eigenvalues of the original matrix * @see #getD() * @see #getRealEigenvalue(int) * @see #getImagEigenvalues() */ double[] getRealEigenvalues(); /** * Returns the real part of the i<sup>th</sup> eigenvalue of the original matrix. * @param i index of the eigenvalue (counting from 0) * @return real part of the i<sup>th</sup> eigenvalue of the original matrix * @see #getD() * @see #getRealEigenvalues() * @see #getImagEigenvalue(int) */ double getRealEigenvalue(int i); /** * Returns a copy of the imaginary parts of the eigenvalues of the original matrix. * @return a copy of the imaginary parts of the eigenvalues of the original matrix * @see #getD() * @see #getImagEigenvalue(int) * @see #getRealEigenvalues() */ double[] getImagEigenvalues(); /** * Returns the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix. * @param i index of the eigenvalue (counting from 0) * @return imaginary part of the i<sup>th</sup> eigenvalue of the original matrix * @see #getD() * @see #getImagEigenvalues() * @see #getRealEigenvalue(int) */ double getImagEigenvalue(int i); /** * Returns a copy of the i<sup>th</sup> eigenvector of the original matrix. * @param i index of the eigenvector (counting from 0) * @return copy of the i<sup>th</sup> eigenvector of the original matrix * @see #getD() */ RealVector getEigenvector(int i); /** * Return the determinant of the matrix * @return determinant of the matrix */ double getDeterminant(); /** * Get a solver for finding the A × X = B solution in exact linear sense. * @return a solver */ DecompositionSolver getSolver(); }