Java tutorial
// GenericsNote: Converted. /* * Copyright 2004 The Apache Software Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.collections15.list; import org.apache.commons.collections15.OrderedIterator; import java.util.*; /** * A <code>List</code> implementation that is optimised for fast insertions and * removals at any index in the list. * <p/> * This list implementation utilises a tree structure internally to ensure that * all insertions and removals are O(log n). This provides much faster performance * than both an <code>ArrayList</code> and a <code>LinkedList</code> where elements * are inserted and removed repeatedly from anywhere in the list. * <p/> * The following relative performance statistics are indicative of this class: * <pre> * get add insert iterate remove * TreeList 3 5 1 2 1 * ArrayList 1 1 40 1 40 * LinkedList 5800 1 350 2 325 * </pre> * <code>ArrayList</code> is a good general purpose list implementation. * It is faster than <code>TreeList</code> for most operations except inserting * and removing in the middle of the list. <code>ArrayList</code> also uses less * memory as <code>TreeList</code> uses one object per entry. * <p/> * <code>LinkedList</code> is rarely a good choice of implementation. * <code>TreeList</code> is almost always a good replacement for it, although it * does use sligtly more memory. * * @author Matt Hall, John Watkinson, Joerg Schmuecker * @author Stephen Colebourne * @version $Revision: 1.1 $ $Date: 2005/10/11 17:05:32 $ * @since Commons Collections 3.1 */ public class TreeList<E> extends AbstractList<E> { // add; toArray; iterator; insert; get; indexOf; remove // TreeList = 1260;7360;3080; 160; 170;3400; 170; // ArrayList = 220;1480;1760; 6870; 50;1540; 7200; // LinkedList = 270;7360;3350;55860;290720;2910;55200; /** * The root node in the AVL tree */ private AVLNode<E> root; /** * The current size of the list */ private int size; //----------------------------------------------------------------------- /** * Constructs a new empty list. */ public TreeList() { super(); } /** * Constructs a new empty list that copies the specified list. * * @param coll the collection to copy * @throws NullPointerException if the collection is null */ public TreeList(Collection<? extends E> coll) { super(); addAll(coll); } //----------------------------------------------------------------------- /** * Gets the element at the specified index. * * @param index the index to retrieve * @return the element at the specified index */ public E get(int index) { checkInterval(index, 0, size() - 1); return root.get(index).getValue(); } /** * Gets the current size of the list. * * @return the current size */ public int size() { return size; } /** * Gets an iterator over the list. * * @return an iterator over the list */ public Iterator<E> iterator() { // override to go 75% faster return listIterator(0); } /** * Gets a ListIterator over the list. * * @return the new iterator */ public ListIterator<E> listIterator() { // override to go 75% faster return listIterator(0); } /** * Gets a ListIterator over the list. * * @param fromIndex the index to start from * @return the new iterator */ public ListIterator<E> listIterator(int fromIndex) { // override to go 75% faster // cannot use EmptyIterator as iterator.add() must work checkInterval(fromIndex, 0, size()); return new TreeListIterator<E>(this, fromIndex); } /** * Searches for the index of an object in the list. * * @return the index of the object, -1 if not found */ public int indexOf(Object object) { // override to go 75% faster if (root == null) { return -1; } return root.indexOf((E) object, root.relativePosition); } /** * Searches for the presence of an object in the list. * * @return true if the object is found */ public boolean contains(Object object) { return (indexOf(object) >= 0); } /** * Converts the list into an array. * * @return the list as an array */ public Object[] toArray() { // override to go 20% faster Object[] array = new Object[size()]; if (root != null) { root.toArray((E[]) array, root.relativePosition); } return array; } //----------------------------------------------------------------------- /** * Adds a new element to the list. * * @param index the index to add before * @param obj the element to add */ public void add(int index, E obj) { modCount++; checkInterval(index, 0, size()); if (root == null) { root = new AVLNode<E>(index, obj, null, null); } else { root = root.insert(index, obj); } size++; } /** * Sets the element at the specified index. * * @param index the index to set * @param obj the object to store at the specified index * @return the previous object at that index * @throws IndexOutOfBoundsException if the index is invalid */ public E set(int index, E obj) { checkInterval(index, 0, size() - 1); AVLNode<E> node = root.get(index); E result = node.value; node.setValue(obj); return result; } /** * Removes the element at the specified index. * * @param index the index to remove * @return the previous object at that index */ public E remove(int index) { modCount++; checkInterval(index, 0, size() - 1); E result = get(index); root = root.remove(index); size--; return result; } /** * Clears the list, removing all entries. */ public void clear() { modCount++; root = null; size = 0; } //----------------------------------------------------------------------- /** * Checks whether the index is valid. * * @param index the index to check * @param startIndex the first allowed index * @param endIndex the last allowed index * @throws IndexOutOfBoundsException if the index is invalid */ private void checkInterval(int index, int startIndex, int endIndex) { if (index < startIndex || index > endIndex) { throw new IndexOutOfBoundsException("Invalid index:" + index + ", size=" + size()); } } //----------------------------------------------------------------------- /** * Implements an AVLNode which keeps the offset updated. * <p/> * This node contains the real work. * TreeList is just there to implement {@link java.util.List}. * The nodes don't know the index of the object they are holding. They * do know however their position relative to their parent node. * This allows to calculate the index of a node while traversing the tree. * <p/> * The Faedelung calculation stores a flag for both the left and right child * to indicate if they are a child (false) or a link as in linked list (true). */ static class AVLNode<T> { /** * The left child node or the predecessor if {@link #leftIsPrevious}. */ private AVLNode<T> left; /** * Flag indicating that left reference is not a subtree but the predecessor. */ private boolean leftIsPrevious; /** * The right child node or the successor if {@link #rightIsNext}. */ private AVLNode<T> right; /** * Flag indicating that right reference is not a subtree but the successor. */ private boolean rightIsNext; /** * How many levels of left/right are below this one. */ private int height; /** * The relative position, root holds absolute position. */ private int relativePosition; /** * The stored element. */ private T value; /** * Constructs a new node with a relative position. * * @param relativePosition the relative position of the node * @param obj the value for the ndoe * @param rightFollower the node with the value following this one * @param leftFollower the node with the value leading this one */ private AVLNode(int relativePosition, T obj, AVLNode<T> rightFollower, AVLNode<T> leftFollower) { this.relativePosition = relativePosition; value = obj; rightIsNext = true; leftIsPrevious = true; right = rightFollower; left = leftFollower; } /** * Gets the value. * * @return the value of this node */ T getValue() { return value; } /** * Sets the value. * * @param obj the value to store */ void setValue(T obj) { this.value = obj; } /** * Locate the element with the given index relative to the * offset of the parent of this node. */ AVLNode<T> get(int index) { int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return this; } AVLNode<T> nextNode = ((indexRelativeToMe < 0) ? getLeftSubTree() : getRightSubTree()); if (nextNode == null) { return null; } return nextNode.get(indexRelativeToMe); } /** * Locate the index that contains the specified object. */ int indexOf(T object, int index) { if (getLeftSubTree() != null) { int result = left.indexOf(object, index + left.relativePosition); if (result != -1) { return result; } } if (value == null ? value == object : value.equals(object)) { return index; } if (getRightSubTree() != null) { return right.indexOf(object, index + right.relativePosition); } return -1; } /** * Stores the node and its children into the array specified. * * @param array the array to be filled * @param index the index of this node */ void toArray(T[] array, int index) { array[index] = value; if (getLeftSubTree() != null) { left.toArray(array, index + left.relativePosition); } if (getRightSubTree() != null) { right.toArray(array, index + right.relativePosition); } } /** * Gets the next node in the list after this one. * * @return the next node */ AVLNode<T> next() { if (rightIsNext || right == null) { return right; } return right.min(); } /** * Gets the node in the list before this one. * * @return the previous node */ AVLNode<T> previous() { if (leftIsPrevious || left == null) { return left; } return left.max(); } /** * Inserts a node at the position index. * * @param index is the index of the position relative to the position of * the parent node. * @param obj is the object to be stored in the position. */ AVLNode<T> insert(int index, T obj) { int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe <= 0) { return insertOnLeft(indexRelativeToMe, obj); } else { return insertOnRight(indexRelativeToMe, obj); } } private AVLNode<T> insertOnLeft(int indexRelativeToMe, T obj) { AVLNode<T> ret = this; if (getLeftSubTree() == null) { setLeft(new AVLNode<T>(-1, obj, this, left), null); } else { setLeft(left.insert(indexRelativeToMe, obj), null); } if (relativePosition >= 0) { relativePosition++; } ret = balance(); recalcHeight(); return ret; } private AVLNode<T> insertOnRight(int indexRelativeToMe, T obj) { AVLNode<T> ret = this; if (getRightSubTree() == null) { setRight(new AVLNode<T>(+1, obj, right, this), null); } else { setRight(right.insert(indexRelativeToMe, obj), null); } if (relativePosition < 0) { relativePosition--; } ret = balance(); recalcHeight(); return ret; } //----------------------------------------------------------------------- /** * Gets the left node, returning null if its a faedelung. */ private AVLNode<T> getLeftSubTree() { return (leftIsPrevious ? null : left); } /** * Gets the right node, returning null if its a faedelung. */ private AVLNode<T> getRightSubTree() { return (rightIsNext ? null : right); } /** * Gets the rightmost child of this node. * * @return the rightmost child (greatest index) */ private AVLNode<T> max() { return (getRightSubTree() == null) ? this : right.max(); } /** * Gets the leftmost child of this node. * * @return the leftmost child (smallest index) */ private AVLNode<T> min() { return (getLeftSubTree() == null) ? this : left.min(); } /** * Removes the node at a given position. * * @param index is the index of the element to be removed relative to the position of * the parent node of the current node. */ AVLNode<T> remove(int index) { int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return removeSelf(); } if (indexRelativeToMe > 0) { setRight(right.remove(indexRelativeToMe), right.right); if (relativePosition < 0) { relativePosition++; } } else { setLeft(left.remove(indexRelativeToMe), left.left); if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return balance(); } private AVLNode<T> removeMax() { if (getRightSubTree() == null) { return removeSelf(); } setRight(right.removeMax(), right.right); if (relativePosition < 0) { relativePosition++; } recalcHeight(); return balance(); } private AVLNode<T> removeMin() { if (getLeftSubTree() == null) { return removeSelf(); } setLeft(left.removeMin(), left.left); if (relativePosition > 0) { relativePosition--; } recalcHeight(); return balance(); } private AVLNode<T> removeSelf() { if (getRightSubTree() == null && getLeftSubTree() == null) return null; if (getRightSubTree() == null) { if (relativePosition > 0) { left.relativePosition += relativePosition + (relativePosition > 0 ? 0 : 1); } left.max().setRight(null, right); return left; } if (getLeftSubTree() == null) { right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1); right.min().setLeft(null, left); return right; } if (heightRightMinusLeft() > 0) { AVLNode<T> rightMin = right.min(); value = rightMin.value; if (leftIsPrevious) { left = rightMin.left; } right = right.removeMin(); if (relativePosition < 0) { relativePosition++; } } else { AVLNode<T> leftMax = left.max(); value = leftMax.value; if (rightIsNext) { right = leftMax.right; } left = left.removeMax(); if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return this; } //----------------------------------------------------------------------- /** * Balances according to the AVL algorithm. */ private AVLNode<T> balance() { switch (heightRightMinusLeft()) { case 1: case 0: case -1: return this; case -2: if (left.heightRightMinusLeft() > 0) { setLeft(left.rotateLeft(), null); } return rotateRight(); case 2: if (right.heightRightMinusLeft() < 0) { setRight(right.rotateRight(), null); } return rotateLeft(); default: throw new RuntimeException("tree inconsistent!"); } } /** * Gets the relative position. */ private int getOffset(AVLNode<T> node) { if (node == null) { return 0; } return node.relativePosition; } /** * Sets the relative position. */ private int setOffset(AVLNode<T> node, int newOffest) { if (node == null) { return 0; } int oldOffset = getOffset(node); node.relativePosition = newOffest; return oldOffset; } /** * Sets the height by calculation. */ private void recalcHeight() { height = Math.max(getLeftSubTree() == null ? -1 : getLeftSubTree().height, getRightSubTree() == null ? -1 : getRightSubTree().height) + 1; } /** * Returns the height of the node or -1 if the node is null. */ private int getHeight(AVLNode<T> node) { return (node == null ? -1 : node.height); } /** * Returns the height difference right - left */ private int heightRightMinusLeft() { return getHeight(getRightSubTree()) - getHeight(getLeftSubTree()); } private AVLNode<T> rotateLeft() { AVLNode<T> newTop = right; // can't be faedelung! AVLNode<T> movedNode = getRightSubTree().getLeftSubTree(); int newTopPosition = relativePosition + getOffset(newTop); int myNewPosition = -newTop.relativePosition; int movedPosition = getOffset(newTop) + getOffset(movedNode); setRight(movedNode, newTop); newTop.setLeft(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private AVLNode<T> rotateRight() { AVLNode<T> newTop = left; // can't be faedelung AVLNode<T> movedNode = getLeftSubTree().getRightSubTree(); int newTopPosition = relativePosition + getOffset(newTop); int myNewPosition = -newTop.relativePosition; int movedPosition = getOffset(newTop) + getOffset(movedNode); setLeft(movedNode, newTop); newTop.setRight(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private void setLeft(AVLNode<T> node, AVLNode<T> previous) { leftIsPrevious = (node == null); left = (leftIsPrevious ? previous : node); recalcHeight(); } private void setRight(AVLNode<T> node, AVLNode<T> next) { rightIsNext = (node == null); right = (rightIsNext ? next : node); recalcHeight(); } // private void checkFaedelung() { // AVLNode maxNode = left.max(); // if (!maxNode.rightIsFaedelung || maxNode.right != this) { // throw new RuntimeException(maxNode + " should right-faedel to " + this); // } // AVLNode minNode = right.min(); // if (!minNode.leftIsFaedelung || minNode.left != this) { // throw new RuntimeException(maxNode + " should left-faedel to " + this); // } // } // // private int checkTreeDepth() { // int hright = (getRightSubTree() == null ? -1 : getRightSubTree().checkTreeDepth()); // // System.out.print("checkTreeDepth"); // // System.out.print(this); // // System.out.print(" left: "); // // System.out.print(_left); // // System.out.print(" right: "); // // System.out.println(_right); // // int hleft = (left == null ? -1 : left.checkTreeDepth()); // if (height != Math.max(hright, hleft) + 1) { // throw new RuntimeException( // "height should be max" + hleft + "," + hright + " but is " + height); // } // return height; // } // // private int checkLeftSubNode() { // if (getLeftSubTree() == null) { // return 0; // } // int count = 1 + left.checkRightSubNode(); // if (left.relativePosition != -count) { // throw new RuntimeException(); // } // return count + left.checkLeftSubNode(); // } // // private int checkRightSubNode() { // AVLNode right = getRightSubTree(); // if (right == null) { // return 0; // } // int count = 1; // count += right.checkLeftSubNode(); // if (right.relativePosition != count) { // throw new RuntimeException(); // } // return count + right.checkRightSubNode(); // } /** * Used for debugging. */ public String toString() { return "AVLNode(" + relativePosition + "," + (left != null) + "," + value + "," + (getRightSubTree() != null) + ", faedelung " + rightIsNext + " )"; } } /** * A list iterator over the linked list. */ static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> { /** * The parent list */ protected final TreeList<E> parent; /** * The node that will be returned by {@link #next()}. If this is equal * to {@link AbstractLinkedList#header} then there are no more values to return. */ protected AVLNode<E> next; /** * The index of {@link #next}. */ protected int nextIndex; /** * The last node that was returned by {@link #next()} or {@link * #previous()}. Set to <code>null</code> if {@link #next()} or {@link * #previous()} haven't been called, or if the node has been removed * with {@link #remove()} or a new node added with {@link #add(Object)}. * Should be accessed through {@link #getLastNodeReturned()} to enforce * this behaviour. */ protected AVLNode<E> current; /** * The index of {@link #current}. */ protected int currentIndex; /** * The modification count that the list is expected to have. If the list * doesn't have this count, then a * {@link java.util.ConcurrentModificationException} may be thrown by * the operations. */ protected int expectedModCount; /** * Create a ListIterator for a list. * * @param parent the parent list * @param fromIndex the index to start at */ protected TreeListIterator(TreeList<E> parent, int fromIndex) throws IndexOutOfBoundsException { super(); this.parent = parent; this.expectedModCount = parent.modCount; this.next = (parent.root == null ? null : parent.root.get(fromIndex)); this.nextIndex = fromIndex; } /** * Checks the modification count of the list is the value that this * object expects. * * @throws ConcurrentModificationException * If the list's modification * count isn't the value that was expected. */ protected void checkModCount() { if (parent.modCount != expectedModCount) { throw new ConcurrentModificationException(); } } public boolean hasNext() { return (nextIndex < parent.size()); } public E next() { checkModCount(); if (!hasNext()) { throw new NoSuchElementException("No element at index " + nextIndex + "."); } if (next == null) { next = parent.root.get(nextIndex); } E value = next.getValue(); current = next; currentIndex = nextIndex++; next = next.next(); return value; } public boolean hasPrevious() { return (nextIndex > 0); } public E previous() { checkModCount(); if (!hasPrevious()) { throw new NoSuchElementException("Already at start of list."); } if (next == null) { next = parent.root.get(nextIndex - 1); } else { next = next.previous(); } E value = next.getValue(); current = next; currentIndex = --nextIndex; return value; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex() - 1; } public void remove() { checkModCount(); if (current == null) { throw new IllegalStateException(); } parent.remove(currentIndex); current = null; currentIndex = -1; nextIndex--; expectedModCount++; } public void set(E obj) { checkModCount(); if (current == null) { throw new IllegalStateException(); } current.setValue(obj); } public void add(E obj) { checkModCount(); parent.add(nextIndex, obj); current = null; currentIndex = -1; nextIndex++; expectedModCount++; } } }