opennlp.tools.languagemodel.NgramLanguageModelTest.java Source code

Java tutorial

Introduction

Here is the source code for opennlp.tools.languagemodel.NgramLanguageModelTest.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.languagemodel;

import java.io.InputStream;
import java.util.Arrays;
import java.util.List;

import org.apache.commons.io.IOUtils;

import org.junit.Assert;
import org.junit.Test;

import opennlp.tools.ngram.NGramGenerator;
import opennlp.tools.util.StringList;

/**
 * Tests for {@link opennlp.tools.languagemodel.NGramLanguageModel}
 */
public class NgramLanguageModelTest {

    @Test
    public void testEmptyVocabularyProbability() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel();
        Assert.assertEquals("probability with an empty vocabulary is always 0", 0d,
                model.calculateProbability(new StringList("")), 0d);
        Assert.assertEquals("probability with an empty vocabulary is always 0", 0d,
                model.calculateProbability(new StringList("1", "2", "3")), 0d);
    }

    @Test
    public void testRandomVocabularyAndSentence() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel();
        for (StringList sentence : LanguageModelTestUtils.generateRandomVocabulary(10)) {
            model.add(sentence, 2, 3);
        }
        double probability = model.calculateProbability(LanguageModelTestUtils.generateRandomSentence());
        Assert.assertTrue("a probability measure should be between 0 and 1 [was " + probability + "]",
                probability >= 0 && probability <= 1);
    }

    @Test
    public void testNgramModel() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel(4);
        model.add(new StringList("I", "saw", "the", "fox"), 1, 4);
        model.add(new StringList("the", "red", "house"), 1, 4);
        model.add(new StringList("I", "saw", "something", "nice"), 1, 2);
        double probability = model.calculateProbability(new StringList("I", "saw", "the", "red", "house"));
        Assert.assertTrue("a probability measure should be between 0 and 1 [was " + probability + "]",
                probability >= 0 && probability <= 1);

        StringList tokens = model.predictNextTokens(new StringList("I", "saw"));
        Assert.assertNotNull(tokens);
        Assert.assertEquals(new StringList("the", "fox"), tokens);
    }

    @Test
    public void testBigramProbabilityNoSmoothing() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel(2, 0);
        model.add(new StringList("<s>", "I", "am", "Sam", "</s>"), 1, 2);
        model.add(new StringList("<s>", "Sam", "I", "am", "</s>"), 1, 2);
        model.add(new StringList("<s>", "I", "do", "not", "like", "green", "eggs", "and", "ham", "</s>"), 1, 2);
        double probability = model.calculateProbability(new StringList("<s>", "I"));
        Assert.assertEquals(0.666d, probability, 0.001);
        probability = model.calculateProbability(new StringList("Sam", "</s>"));
        Assert.assertEquals(0.5d, probability, 0.001);
        probability = model.calculateProbability(new StringList("<s>", "Sam"));
        Assert.assertEquals(0.333d, probability, 0.001);
        probability = model.calculateProbability(new StringList("am", "Sam"));
        Assert.assertEquals(0.5d, probability, 0.001);
        probability = model.calculateProbability(new StringList("I", "am"));
        Assert.assertEquals(0.666d, probability, 0.001);
        probability = model.calculateProbability(new StringList("I", "do"));
        Assert.assertEquals(0.333d, probability, 0.001);
        probability = model.calculateProbability(new StringList("I", "am", "Sam"));
        Assert.assertEquals(0.333d, probability, 0.001);
    }

    @Test
    public void testTrigram() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel(3);
        model.add(new StringList("I", "see", "the", "fox"), 2, 3);
        model.add(new StringList("the", "red", "house"), 2, 3);
        model.add(new StringList("I", "saw", "something", "nice"), 2, 3);
        double probability = model.calculateProbability(new StringList("I", "saw", "the", "red", "house"));
        Assert.assertTrue("a probability measure should be between 0 and 1 [was " + probability + "]",
                probability >= 0 && probability <= 1);

        StringList tokens = model.predictNextTokens(new StringList("I", "saw"));
        Assert.assertNotNull(tokens);
        Assert.assertEquals(new StringList("something", "nice"), tokens);
    }

    @Test
    public void testBigram() throws Exception {
        NGramLanguageModel model = new NGramLanguageModel(2);
        model.add(new StringList("I", "see", "the", "fox"), 1, 2);
        model.add(new StringList("the", "red", "house"), 1, 2);
        model.add(new StringList("I", "saw", "something", "nice"), 1, 2);
        double probability = model.calculateProbability(new StringList("I", "saw", "the", "red", "house"));
        Assert.assertTrue("a probability measure should be between 0 and 1 [was " + probability + "]",
                probability >= 0 && probability <= 1);

        StringList tokens = model.predictNextTokens(new StringList("I", "saw"));
        Assert.assertNotNull(tokens);
        Assert.assertEquals(new StringList("something"), tokens);
    }

    @Test
    public void testSerializedNGramLanguageModel() throws Exception {
        NGramLanguageModel languageModel = new NGramLanguageModel(
                getClass().getResourceAsStream("/opennlp/tools/ngram/ngram-model.xml"), 3);
        double probability = languageModel.calculateProbability(new StringList("The", "brown", "fox", "jumped"));
        Assert.assertTrue("a probability measure should be between 0 and 1 [was " + probability + "]",
                probability >= 0 && probability <= 1);
        StringList tokens = languageModel.predictNextTokens(new StringList("fox"));
        Assert.assertNotNull(tokens);
        Assert.assertEquals(new StringList("jumped"), tokens);
    }

    @Test
    public void testTrigramLanguageModelCreationFromText() throws Exception {
        int ngramSize = 3;
        NGramLanguageModel languageModel = new NGramLanguageModel(ngramSize);
        InputStream stream = getClass().getResourceAsStream("/opennlp/tools/languagemodel/sentences.txt");
        for (String line : IOUtils.readLines(stream)) {
            String[] array = line.split(" ");
            List<String> split = Arrays.asList(array);
            List<String> generatedStrings = NGramGenerator.generate(split, ngramSize, " ");
            for (String generatedString : generatedStrings) {
                String[] tokens = generatedString.split(" ");
                if (tokens.length > 0) {
                    languageModel.add(new StringList(tokens), 1, ngramSize);
                }
            }
        }
        StringList tokens = languageModel.predictNextTokens(new StringList("neural", "network", "language"));
        Assert.assertNotNull(tokens);
        Assert.assertEquals(new StringList("models"), tokens);
        double p1 = languageModel.calculateProbability(new StringList("neural", "network", "language", "models"));
        double p2 = languageModel.calculateProbability(new StringList("neural", "network", "language", "model"));
        Assert.assertTrue(p1 > p2);
    }
}