Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.languagemodel; import java.math.BigDecimal; import java.math.MathContext; import java.util.Collection; import java.util.LinkedList; import java.util.Random; import org.junit.Ignore; import opennlp.tools.ngram.NGramUtils; /** * Utility class for language models tests */ @Ignore public class LanguageModelTestUtils { private static final java.math.MathContext CONTEXT = MathContext.DECIMAL128; private static Random r = new Random(); private static final char[] chars = new char[] { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j' }; public static Collection<String[]> generateRandomVocabulary(int size) { Collection<String[]> vocabulary = new LinkedList<>(); for (int i = 0; i < size; i++) { String[] sentence = generateRandomSentence(); vocabulary.add(sentence); } return vocabulary; } public static String[] generateRandomSentence() { int dimension = r.nextInt(10) + 1; String[] sentence = new String[dimension]; for (int j = 0; j < dimension; j++) { int i = r.nextInt(10); char c = chars[i]; sentence[j] = c + "-" + c + "-" + c; } return sentence; } public static double getPerplexity(LanguageModel lm, Collection<String[]> testSet, int ngramSize) throws ArithmeticException { BigDecimal perplexity = new BigDecimal(1d); for (String[] sentence : testSet) { for (String[] ngram : NGramUtils.getNGrams(sentence, ngramSize)) { double ngramProbability = lm.calculateProbability(ngram); perplexity = perplexity .multiply(new BigDecimal(1d).divide(new BigDecimal(ngramProbability), CONTEXT)); } } double p = Math.log(perplexity.doubleValue()); if (Double.isInfinite(p) || Double.isNaN(p)) { return Double.POSITIVE_INFINITY; // over/underflow -> too high perplexity } else { BigDecimal log = new BigDecimal(p); return Math.pow(Math.E, log.divide(new BigDecimal(testSet.size()), CONTEXT).doubleValue()); } } }