Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package neuralnetwork; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.core.Debug; import weka.core.Instances; import weka.core.converters.ConverterUtils; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Standardize; import weka.filters.unsupervised.instance.RemovePercentage; /** * * @author Harvey */ public class NeuralNetwork { /** * @param args the command line arguments * @throws java.lang.Exception */ public static void main(String[] args) throws Exception { ConverterUtils.DataSource source; source = new ConverterUtils.DataSource("C:\\Users\\Harvey\\Documents\\iris.csv"); Instances data = source.getDataSet(); if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } data.randomize(new Debug.Random(1)); RemovePercentage trainFilter = new RemovePercentage(); trainFilter.setPercentage(70); trainFilter.setInputFormat(data); Instances train = Filter.useFilter(data, trainFilter); trainFilter.setInvertSelection(true); trainFilter.setInputFormat(data); Instances test = Filter.useFilter(data, trainFilter); Standardize filter = new Standardize(); filter.setInputFormat(train); Instances newTrain = Filter.useFilter(test, filter); Instances newTest = Filter.useFilter(train, filter); Classifier nNet = new NeuralNet(); nNet.buildClassifier(newTrain); Evaluation eval = new Evaluation(newTest); eval.evaluateModel(nNet, newTest); System.out.println(eval.toSummaryString("\nResults\n-------------\n", false)); } }