Java tutorial
/* * Copyright 2006-2015 The MZmine 2 Development Team * * This file is part of MZmine 2. * * MZmine 2 is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * MZmine 2 is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * MZmine 2; if not, write to the Free Software Foundation, Inc., 51 Franklin St, * Fifth Floor, Boston, MA 02110-1301 USA */ package net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.hierarchical; import java.util.logging.Level; import java.util.logging.Logger; import javax.annotation.Nonnull; import net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.ClusteringAlgorithm; import net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.ClusteringResult; import net.sf.mzmine.parameters.ParameterSet; import weka.clusterers.HierarchicalClusterer; import weka.core.Instances; public class HierarClusterer implements ClusteringAlgorithm { private Logger logger = Logger.getLogger(this.getClass().getName()); private static final String MODULE_NAME = "Hierarchical clusterer"; @Override public @Nonnull String getName() { return MODULE_NAME; } @Override public ClusteringResult performClustering(Instances dataset, ParameterSet parameters) { HierarchicalClusterer clusterer = new HierarchicalClusterer(); String[] options = new String[5]; LinkType link = parameters.getParameter(HierarClustererParameters.linkType).getValue(); DistanceType distanceType = parameters.getParameter(HierarClustererParameters.distanceType).getValue(); options[0] = "-L"; options[1] = link.name(); options[2] = "-A"; switch (distanceType) { case EUCLIDIAN: options[3] = "weka.core.EuclideanDistance"; break; case CHEBYSHEV: options[3] = "weka.core.ChebyshevDistance"; break; case MANHATTAN: options[3] = "weka.core.ManhattanDistance"; break; case MINKOWSKI: options[3] = "weka.core.MinkowskiDistance"; break; } options[4] = "-P"; try { clusterer.setOptions(options); clusterer.setPrintNewick(true); clusterer.buildClusterer(dataset); // clusterer.graph() gives only the first cluster and in the case // there // are more than one cluster the variables in the second cluster are // missing. // I'm using clusterer.toString() which contains all the clusters in // Newick format. ClusteringResult result = new ClusteringResult(null, clusterer.toString(), clusterer.getNumClusters(), null); return result; } catch (Exception ex) { logger.log(Level.SEVERE, null, ex); return null; } } @Override public @Nonnull Class<? extends ParameterSet> getParameterSetClass() { return HierarClustererParameters.class; } }